
	US-001

	
	

	
	ed
	The document does not appear to be organized according to the ISO/IEC Directives, Part 2. Prior revisions of ISO/IEC 9945 presented each volume of IEEE 1003.1 as a separate part of a multipart series.
	Publish each volume as a separate part of a multipart series.
	

	US-002

	
	1.7.3.2.4

	
	te
	In Volume 1, under 7.3.2.4, the definition of LC_COLLATE does not preclude the possibility that NUL is not at the beginning of the collation ordering. There are no C interfaces defined by POSIX that allows observation of such ordering of NUL; however, such ordering appears to be observable via the string comparison facility of the `test` utility in environments that both treat the utility as intrinsic and allow NUL characters in shell strings (perhaps via command substitution).

The C++ standard library specifies interfaces that would allow observation of such ordering of NUL; however, the lack of standardized C interfaces with such capability means that C++ standard library implementations suffer in terms of quality or portability. localedef is a POSIX facility that serves as a source for locales with exotic sorting of NUL, so it seems within the scope of POSIX to declare that sorting under locales where NUL does not sort as the least value is subject to limitations.
	Specify that placing NUL in the collation order in any position other than the first need not succeed in all contexts.
	

	US-003

	
	2.3

	
	te
	In Volume 2, Chapter 3, the Description for getlocalename_l specifies that using LC_ALL as the category argument for a call shall result in the call being not successful. This restriction in functionality leaves application developers without a portable way to record, into a string usable with setlocale (with LC_ALL), the “name” of the locale represented by the locale object. In particular, “composite” or “mixed” locales using a different locale definition for at least one category have such “names” formed by the implementation, but the format is not uniform across implementations.

The C++ standard library presents a std::locale type with interfaces that can produce such mixed locales in a thread-safe manner. It also includes a std::locale::global function that requires setlocale interaction with such a mixed std::locale. C++ standard library implementations currently suffer in terms of quality or portability from a lack of a C-level, standardized, thread-safe locale interface that will produce a “name” for such mixed locales. As POSIX provides thread-safe locales as an extension to C, the missing functionality seems to be within the scope of POSIX to provide.
	Remove the specification that using LC_ALL results in a call being not successful. Specify that using LC_ALL results in “a string which encodes the locale name(s) for all of the individual categories, consistent with setlocale”. Specify that using LC_ALL for the category returns a string that may be invalidated or overwritten by a subsequent call in the same thread with LC_ALL. Update the rationale; an example use case for LC_ALL is application portability in recording the “international environment” even in the face of extensions such as the introduction of extra categories such as LC_TELEPHONE.

	

	Template for comments and secretariat observations
	Date:2023-05-31
	Document:
	Project:

	MB/
NC1
	Line number
	Clause/
Subclause
	Paragraph/
Figure/Table
	Type of comment2
	Comments
	Proposed change
	Observations of the secretariat

1	MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2	Type of comment:	ge = general	te = technical	ed = editorial
Page 1 of 3
ISO_IEC CD 9945_ANSI.docx: Collation successful
Collation of files was successful. Number of collated files: 1
SELECTED (number of files): 1
PASSED TEST (number of files conformed to CCT table model): 1
FAILED TEST (number of files conformed to CCT table model): 0
CCT - Version 2020.1

[bookmark: _GoBack]

