
Page and line numbers refer to IEEE Std 1003.1-2017

On P55 after L1672 (after 3.137), add a new definition:
3.w Dot-Po File

See [xref to 3.y Portable Messages Object Source File].

On page 69 after line 2021 (after 3.226), add a new definition:
3.x Messages Object
A file containing message identifiers and translations in an unspecified format. Used by the gettext
family of functions and the gettext and ngettext utilities for internationalization and localization of
programs and scripts. Messages objects have the filename suffix .mo, and can be created by the
msgfmt utility.

See also [xref to 3.z Text Domain].

On P79 after L2265 (after 3.282), add a new definition:
3.y Portable Messages Object Source File (or Dot-Po File)

A text file containing messages and directives. A portable messages object source file can be
compiled into a messages object by the msgfmt utility.

Note: By convention, portable messages object source files have filenames ending with the .po
suffix. Utility descriptions in this standard frequently use dot-po file as a shorthand for portable
messages object source file (even though the .po suffix need not be included in the filename).
Template portable messages object source files can be created from C-language source files by
the xgettext utility.

On Page 98 after line 2728 (after 3.402), add a new definition:

3.z Text Domain
A named collection of messages objects (one messages object per supported language) for
internationalization and localization purposes. A text domain is often named after the application
or library that provides the collection, but may have a more general name if it is intended to be
shared by multiple applications or libraries.

Note: The use of text domains is defined in detail in the descriptions of the bindtextdomain() and
gettext family of functions in the System Interfaces volume of POSIX.1-202x.

[Editorial: After the above definitions have been added, update the definitions section numbers to again
be sequential and unique.]

After page 135 line 3954 add:

3. Some functions, such as catopen() and those related to text domains, may reference various
environment variables and a locale category of a specific locale to access files they need to

use.

In section 8.2, page 174, after line 5696, add:

LANGUAGE
The LANGUAGE environment variable shall be examined to determine the messages object to
be used for the gettext family of functions or the gettext and ngettext utilities[XSI] if NLSPATH is
not set or the evaluation of NLSPATH did not lead to a suitable messages object being
found[/XSI]. The value of LANGUAGE shall be a list of locale names separated by a <colon> (':')
character. If LANGUAGE is set to a non-empty string, each locale name shall be tried in the
specified order and if a messages object is found, it shall be used for translation. If a locale
name has the format language[_territory][.codeset][@modifier], additional searches of locale
names without .codeset (if present), without _territory (if present), and without @modifier (if
present) may be performed; if .codeset is not present, additional searches of locale names with
an added .codeset may be performed. If locale names contain a <slash> ('/') character, or
consist entirely of a dot (“.”) or dot dot ("..") character sequence, or are empty the behavior is
implementation defined and they may be ignored for security reasons.

The locale names in LANGUAGE shall override the locale name associated with the "active
category" of the current locale or, in the case of functions with an _l suffix, the provided locale
object, and the language-specific part of the default search path for messages objects, unless
the locale name that would be overridden is C or POSIX. For the dcgettext(), dcgettext_l(),
dcngettext(), and dcngettext_l() functions, the active category is specified by the category
argument; for all other gettext family functions and for the gettext and ngettext utilities, the
active category is LC_MESSAGES.

For example, if:
The LC_MESSAGES environment variable is "de_DE" (and LC_ALL is unset) and
setlocale(LC_ALL, "") has been used to set the current locale
The LANGUAGE environment variable is "fr_FR:it"
Messages objects are by default searched for in /gettextlib

then the following pathnames are tried in this order by gettext family functions that have neither
a category argument nor an _l suffix until a valid messages object is found:

/gettextlib/fr_FR/LC_MESSAGES/textdomain.mo
(Optionally) /gettextlib/fr/LC_MESSAGES/textdomain.mo
(Optionally) the above two pathnames with added codeset elements
/gettextlib/it/LC_MESSAGES/textdomain.mo
(Optionally) the above pathname with added codeset elements
/gettextlib/de_DE/LC_MESSAGES/textdomain.mo

In section 8.2, page 175, change lines 5733-5763 (NLSPATH) from:

This variable shall contain a sequence of templates that the catopen() function uses when
attempting to locate message catalogs. Each template consists of an optional prefix, one or more
conversion specifications, a pathname, and an optional suffix.

For example:

NLSPATH="/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogs in the directory /system/nlslib, where
the catalog name should be constructed from the name parameter passed to catopen() (%N), with
the suffix .cat.

Conversion specifications consist of a '%' symbol, followed by a single-letter keyword. The
following keywords are currently defined:

%N The value of the name parameter passed to catopen().
%L The value of the LC_MESSAGES category.
%l The language element from the LC_MESSAGES category.
%t The territory element from the LC_MESSAGES category.
%c The codeset element from the LC_MESSAGES category.
%% A single '%' character.

An empty string is substituted if the specified value is not currently defined. The separators
<underscore> ('_') and <period> ('.') are not included in the %t and %c conversion
specifications.

Templates defined in NLSPATH are separated by <colon> characters (':'). A leading or two
adjacent <colon> characters ("::") is equivalent to specifying %N. For example:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen() that it should look for the requested message catalog in name, name.cat,
and /nlslib/category/name.cat, where category is the value of the LC_MESSAGES category of the
current locale.

Users should not set the NLSPATH variable unless they have a specific reason to override the
default system path. Setting NLSPATH to override the default system path produces undefined
results in the standard utilities and in applications with appropriate privileges.

to:

[XSI]This variable shall contain a sequence of templates to be used by catopen() when locating
message catalogs, and by the gettext family of functions when locating messages objects. Each
template consists of an optional prefix, one or more conversion specifications, and an optional
suffix.

The conversion specification descriptions below refer to a "currently active text domain". The
currently active text domain is, in decreasing order of precedence:

the domain parameter of the gettext family of functions or the gettext and ngettext utilities
the text domain bound by the last call to textdomain() when using a gettext family function,
or the TEXTDOMAIN environment variable when using the gettext and ngettext utilities
the default text domain

Conversion specifications consist of a '%' symbol, followed by a single-letter keyword. The
following conversion specifications are currently defined:

%N The value of the name parameter passed to catopen() or the currently active text domain of
the gettext family of functions and the gettext and ngettext utilities (see above).
%L The locale name given by the value of the active category (see LANGUAGE above) in either
the current locale or, in the case of functions with an _l suffix, the provided locale object.
%l The language element of the locale name that would result from a %L conversion.
%t The territory element of the locale name that would result from a %L conversion.
%c The codeset element of the locale name that would result from a %L conversion.
%% A single '%' character.

An empty string shall be substituted if the specified value is not currently defined. The separators
<underscore> ('_') and <period> ('.') shall not be included in the %t and %c conversion
specifications.

Templates defined in NLSPATH are separated by <colon> characters (':'). A leading, trailing, or
two adjacent <colon> characters ("::") shall be equivalent to specifying %N.

Since <colon> is a separator in this context, directory names that might be used in NLSPATH
should not include a <colon> character.

Example 1, for an application that uses catopen() but does not use the gettext family of functions:

NLSPATH="/system/nlslib/%N.cat"

indicates that catopen() should look for all message catalogs in the directory /system/nlslib,
where the catalog name should be constructed from the name argument (replacing %N) passed to
catopen(), with the suffix .cat.

Example 2, for an application that uses the gettext family of functions but does not use catopen():

NLSPATH="/usr/lib/locale/fr/LC_MESSAGES/%N.mo"

indicates that the gettext family of functions (and the gettext and ngettext utilities) should look for
all messages objects in the directory /usr/lib/locale/fr/LC_MESSAGES, where the messages

object's name should be constructed from the currently active text domain (replacing %N), with the
suffix .mo.

Example 3, for an application that uses catopen() but does not use the gettext family of functions:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates that catopen() should look for the requested message catalog in name, name.cat, and
/nlslib/localename/name.cat, where localename is the locale name given by the value of the
LC_MESSAGES category in the current locale.

Example 4, for an application that uses the gettext family of functions but does not use catopen():

NLSPATH="/usr/lib/locale/%L/%N.mo:/usr/lib/locale/fr/%N.mo"

indicates that the gettext family of functions (and the gettext and ngettext utilities) should look for
all messages objects first in /usr/lib/locale/localename/textdomain.mo, and if not found there,
then try in /usr/lib/locale/fr/textdomain.mo, where localename is the locale name given by the value
of the active category in the current locale or provided locale object.

Example 5, for an application that uses catopen() and the gettext family of functions:

NLSPATH="/usr/lib/locale/%L/%N.mo:/system/nlslib/%L/%N.cat"

indicates that the gettext family of functions (and the gettext and ngettext utilities) should look for
all messages objects in /usr/lib/locale/localename/textdomain.mo, where localename is the locale
name given by the value of the active category in the current locale or provided locale object. Also,
catopen() should look for all message catalogs in the directory
/system/nlslib/localename/name.cat, (assuming that /usr/lib/locale/localename/name.mo is not a
message catalog). In this scenario, catopen() ignores all files that are not valid message catalogs
while traversing NLSPATH. Furthermore, the gettext family of functions and the gettext and ngettext
utilities ignore all files that are not valid messages objects found while traversing NLSPATH.

Users should not set the NLSPATH variable unless they have a specific reason to override the
default system path. Setting NLSPATH to override the default system path may produce undefined
results in the standard utilities other than gettext and ngettext, and in applications with appropriate
privileges.

Specifying a relative pathname in the NLSPATH environment variable should be avoided without a
specific reason, including the use of a leading or two adjacent <colon> characters, since it may
result in messages objects being searched for in a directory relative to the current working
directory of the calling process; if the process calls the chdir() function, the directory searched for
may also be changed.[/XSI]

In section 8.2, page 176, add after line 5763:

TEXTDOMAIN
Specify the text domain name that the gettext and ngettext utilities use during the search for
messages objects. This is identical to the messages object filename without the .mo suffix.

TEXTDOMAINDIR

Specify the pathname to the root directory of the messages object hierarchy the gettext and
ngettext utilities use during the search for messages objects. If present, it shall replace the
default root directory pathname. [XSI]NLSPATH has precedence over TEXTDOMAINDIR.[/XSI]

Add the following new header before <limits.h>:

NAME
 libintl.h — international messaging

SYNOPSIS
#include <libintl.h>

DESCRIPTION
The <libint.h> header may define the macro TEXTDOMAINMAX. If defined, it shall have the same
value as {TEXTDOMAIN_MAX} in <limits.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

char *bindtextdomain(const char *, const char *);

char *bind_textdomain_codeset(const char *, const char *);

char *dcgettext(const char *, const char *, int);

char *dcgettext_l(const char *, const char *,

 int, locale_t);

char *dcngettext(const char *, const char *,

 const char *, unsigned long int, int);

char *dcngettext_l(const char *, const char *,

 const char *, unsigned long int, int, locale_t);

char *dgettext(const char *, const char *);

char *dgettext_l(const char *, const char *, locale_t);

char *dngettext(const char *, const char *,

 const char *, unsigned long int);

char *dngettext_l(const char *, const char *,

 const char *, unsigned long int, locale_t);

char *gettext(const char *);

char *gettext_l(const char *, locale_t);

char *ngettext(const char *, const char *,

 unsigned long int);

char *ngettext_l(const char *, const char *,

 unsigned long int, locale_t);

char *textdomain(const char *);

APPLICATION USAGE
None.

RATIONALE
Some historical implementations defined TEXTDOMAINMAX in this header. This standard instead
defines {TEXTDOMAIN_MAX} in <limits.h>. This was done to allow the maximum length of a text
domain name to vary depending on the filesystem type used to store message catalogs.
Implementations are allowed to continue to define TEXTDOMAINMAX in this header as an
extension to the standard (see XSH 2.2.2 on page NNN).

FUTURE DIRECTIONS
None.

SEE ALSO

 XSH gettext, bindtextdomain()

Add to <limits.h> on page 274 after line 9185:

{TEXTDOMAIN_MAX}
Maximum length of a text domain name, not including the terminating null byte.
Minimum Acceptable Value: {_POSIX_NAME_MAX} - 3
<XSI>Minimum Acceptable Value: {_XOPEN_NAME_MAX} - 3</XSI>

Add to <unistd.h>, page 444 after line 15233 (i.e. in alphabetic order)

_PC_TEXTDOMAIN_MAX

Add to the table on page 475, at line 16324 (between grp.h and limits.h):

<libintl.h> | | | TEXTDOMAINMAX

On page 519 line 18141, insert the following into the list of functions that may be cancellation points:

bindtextdomain()
dcgettext()
dcgettext_l()
dcngettext()
dcngettext_l()
dgettext()
dgettext_l()
dngettext()
dngettext_l()
gettext()
gettext_l()
ngettext()
ngettext_l()

For catopen(), on P649 L22307 append to the paragraph:

[XSI]When searching NLSPATH, catopen() shall ignore any files it finds that are not valid message
catalog files.[/XSI]

For catopen(), change on P649, L22332:

[ENOENT] The message catalog does not exist or the name argument points to an empty string.

to:

[ENOENT] The name argument contains a '/' and does not name an existing message catalog, the
name argument does not contain a '/' and searching [XSI]NLSPATH (if set) and then [/XSI]the
implementation-defined default path for a message catalog with that name failed, one or more files
exist but all are of an invalid format, or the name argument points to an empty string.

Add to fpathconf() table on page 902 line 30512:

{TEXTDOMAIN_MAX} | _PC_TEXTDOMAIN_MAX | 3,4

Add the following sections where appropriate:

NAME
gettext, gettext_l, dgettext, dgettext_l, dcgettext, dcgettext_l, ngettext, ngettext_l, dngettext,
dngettext_l, dcngettext, dcngettext_l — message handling functions

SYNOPSIS
#include <libintl.h>

char *dgettext(const char *domainname, const char *msgid);

char *dgettext_l(const char *domainname, const char *msgid,
 locale_t locale);

char *dcgettext(const char *domainname, const char *msgid,
 int category);

char *dcgettext_l(const char *domainname, const char *msgid,
 int category, locale_t locale);

char *dngettext(const char *domainname, const char *msgid,
 const char *msgid_plural, unsigned long int n);

char *dngettext_l(const char *domainname, const char *msgid,
 const char *msgid_plural, unsigned long int n, locale_t
locale);

char *dcngettext(const char *domainname, const char *msgid,
 const char *msgid_plural, unsigned long int n, int category);

char *dcngettext_l(const char *domainname, const char *msgid,
 const char *msgid_plural, unsigned long int n, int category,

locale_t locale);

char *gettext(const char *msgid);

char *gettext_l(const char *msgid, locale_t locale);

char *ngettext(const char *msgid, const char *msgid_plural,
 unsigned long int n);

char *ngettext_l(const char *msgid, const char *msgid_plural,
 unsigned long int n, locale_t locale);

DESCRIPTION
The gettext() function shall:

attempt to locate a suitable messages object (described in detail below) for the LC_MESSAGES
category in the current locale, and for the current text domain (see [xref to textdomain()]),
containing the string identified by msgid,
retrieve the string identified by msgid from the messages object,
convert the string to the output codeset if necessary (described in detail below), and
return the result.

If the locale name in effect is "POSIX" or "C" (i.e. the name associated with the LC_MESSAGES
locale category in the current locale), or if no suitable messages object exists, or if no string
identified by msgid exists in the messages object, or if an error occurs, msgid shall be returned.

The dgettext() function shall be equivalent to gettext(), except domainname shall be used instead
of the current text domain to locate the messages object.

The dcgettext() function shall be equivalent to dgettext(), except the locale category identified by
category shall be used instead of LC_MESSAGES.

The ngettext() function shall be equivalent to gettext(), except:

the string to retrieve shall be identified by a combination of msgid and n (see [xref to XCU
msgfmt]), and
if the locale name in effect is "POSIX" or "C", or if no suitable messages object exists, or if no
string identified by the combination of msgid and n exists in the messages object, or if an error
occurs, the return value shall be msgid if n is 1, otherwise msgid_plural.

The dngettext() function shall be equivalent to ngettext(), except domainname shall be used instead
of the current text domain to locate the messages object.

The dcngettext() function shall be equivalent to dngettext(), except the locale category identified by
category shall be used instead of LC_MESSAGES.

The *_l() functions shall be equivalent to their counterparts without the _l suffix, except locale shall
be used instead of the current locale. If locale is the special locale object LC_GLOBAL_LOCALE or
is not a valid locale object handle, the behavior is undefined.

The msgid and msgid_plural arguments shall be strings. If either msgid or msgid_plural is an
empty string, or contains characters not in the portable character set, the results are unspecified. If
the argument category is LC_ALL, the results are unspecified.

The location of the messages object shall be determined according to the following criteria,
stopping when the first messages object is found:
 1. [XSI]If the NLSPATH environment variable is set to a non-empty string, an NLSPATH search shall
be performed as described in [xref to XBD 8.2]. If NLSPATH identifies more than one template to
use, each template in turn shall be used until a valid messages object is found.[/XSI]
 2. If the LANGUAGE environment variable is set to a non-empty string, a LANGUAGE search shall
be performed as described below. If LANGUAGE identifies more than one directory to search, each
directory shall be searched until a valid messages object is found.
 3. A single-locale search shall be performed as described below.

For [XSI]the NLSPATH search and[/XSI] the single-locale search, the single locale name used to
locate the messages object shall be the locale name associated with the selected locale category
from the current locale, or the provided locale object if calling one of the *_l() functions; additional
searches of locale names without .codeset (if present), without _territory (if present), and without
@modifier (if present) may be performed.

For the LANGUAGE search, the value of the LANGUAGE environment variable shall be a list of one
or more locale names separated by a colon (':') character. Each locale name shall be tried in the
specified order. If a messages object for the locale does not exist, or cannot be opened, or is
unsuitable for implementation-defined reasons (such as security), the next locale name (if any)
shall be tried. If:

a messages object for the locale can be opened but cannot be processed without error, or
the messages object does not contain a string identified by msgid, or msgid and n for the
ngettext functions,

it is unspecified whether the next locale name (if any) is tried. In all other cases, the messages
object for the locale shall be used.

For each locale name in LANGUAGE, or if LANGUAGE is not set or is empty, or no suitable
messages object is found in processing LANGUAGE, the pathname used to locate the messages
object shall be dirname/localename/categoryname/textdomainname.mo, where:

The dirname part is the dirname argument of the most recent successful call to
bindtextdomain() that had textdomainname as the domainname argument; any trailing <slash>
characters in dirname shall be discarded. If a successful call to bindtextdomain() has not been
made for textdomainname, an implementation-defined default directory shall be used.
For the LANGUAGE search, the localename part is each locale name from LANGUAGE in turn; if
a locale name has the format language[_territory][.codeset][@modifier], additional searches of
locale names without .codeset (if present), without _territory (if present), and without @modifier
(if present) may be performed; if .codeset is not present, additional searches of locale names
with an added .codeset may be performed. For the single-locale search, the localename part is
the name of the current locale, or the locale specified in an *_l() function call, for the category
named by categoryname. Spellings of codeset names are not standardized, and
implementations may attempt to use different commonly known spellings, for example "utf8"
and "UTF-8".
The categoryname part is the string "LC_MESSAGES" if gettext(), dgettext(), ngettext(), or
dngettext() is called, or the locale category name corresponding to the category argument to
dcgettext() or dcngettext(). Likewise for the *_l() variants of all these functions.
For gettext(), gettext_l(), ngettext() and ngettext_l(), the textdomainname part is the text domain
set by the last successful call to textdomain(). For dgettext(), dcgettext(), dngettext(),
dcngettext(), and the *_l() variants of these functions, textdomainname is the text domain
specified by the domainname argument. The domainname argument shall be equivalent in
syntax and meaning to the domainname argument to textdomain(), except that the selection of
the text domain shall affect only the dgettext(), dcgettext(), dngettext(), and dcngettext()
function calls and their *_l() variants. If the domainname argument is a null pointer, the text
domain set by the last successful call to textdomain() shall be used. For all of these functions,
if a successful call to textdomain() has not been made the default text domain "messages" shall
be used.

Resolution of the messages object pathname shall be performed the first time one of the gettext
family of functions is called for a given combination of dirname, localename, categoryname, and
textdomainname. It is unspecified whether the pathname is re-resolved if the combination has
been used before in a call to one of the gettext family of functions. If bindtextdomain() performs
pathname resolution of its dirname argument, only the part of the messages object pathname after
dirname shall be resolved by the gettext family of functions.

When the gettext family of functions return a message string that was found in a messages object,
they shall convert the codeset of the message string to the output codeset if a codeset is specified
in the messages object (see [xref to XCU msgfmt]) and the output codeset is not the same as that
codeset. If a successful call to bind_textdomain_codeset() has been made with the text domain of
the messages object as the domainname argument and a non-null codeset argument, the output
codeset shall be the codeset argument from the most recent such call. Otherwise, the output
codeset shall be the codeset of characters in the current locale, or the provided locale object if
calling one of the *_l() functions, as specified by the LC_CTYPE category of the locale. The
conversion shall be performed as if by a call to iconv() using a conversion descriptor returned by

iconv_open(<output codeset>, <messages object codeset>), except that if the return value of iconv()
would be greater than zero, the non-identical conversions performed by the gettext family of
functions need not be the same as those that such an iconv() call would perform. If an error
prevents the codeset conversion from being performed, the gettext family of functions shall behave
as if no message string was found in the messages object. If at least one non-identical conversion
is performed that results in a fallback character (one that does not provide any information about
the character it was converted from, for example, a <question-mark> or ``replacement-character''),
the gettext family of functions may behave as if no message string was found in the messages
object.

RETURN VALUE
The gettext(), gettext_l(), dgettext(), dgettext_l(), dcgettext(), and dcgettext_l() functions shall return
the message string described in DESCRIPTION if successful. Otherwise, they shall return msgid.

The ngettext(), ngettext_l(), dngettext(), dngettext_l(), dcngettext(), and dcngettext_l() functions
shall return the message string described in DESCRIPTION if successful. Otherwise, msgid shall be
returned if n is equal to 1, or msgid_plural if n is not equal to 1.

The application shall ensure that it does not modify the returned string. A subsequent call to a
gettext family function shall not overwrite or invalidate the returned string. The returned string may
be invalidated by a subsequent call to bind_textdomain_codeset(), bindtextdomain(), setlocale(), or
textdomain() in the same process, except for calls that only query values. The returned string shall
not be invalidated by a subsequent call to uselocale().

ERRORS
The gettext family of functions shall not modify errno. If an error occurs these functions shall
return a string as described in RETURN VALUE.

EXAMPLES
The example code below assumes the following:

The implementation-defined default directory is /system/gettextlib
The following locales are available on the target system: en_US, en_GB, de_DE. The codeset
used for all of these locales is UTF-8.
The en_AU locale is not available on the target system.
The target system supports conversion from ISO/IEC 8859-1 to UTF-8.
The codeset used for the POSIX locale is ASCII.
The target system does not support conversion from ISO/IEC 8859-1 to ASCII.

Furthermore, the following .mo files (and only the following .mo files) are installed:

/system/gettextlib/en_US/LC_MESSAGES/mail.mo and

/messagecatalogs/example/en_US/LC_MESSAGES/mail.mo

These are compiled from a portable messages object source file (dot-po file) with the following
ISO/IEC 8859-1 encoded contents (see the EXTENDED DESCRIPTION of the msgfmt utility for a
description of the dot-po file format):

msgid ""

msgstr ""

"Content-Type: text/plain; charset=ISO_8859-1\n"

"Plural-Forms: nplurals=4; plural= n==1?0: (n>1 && n< 10)?1: (n==0)?

2:3;\n"

msgid "recipient"

msgid_plural "recipients"

msgstr[0] "1 recipient"

msgstr[1] "2 to 9 recipients"

msgstr[2] "no recipients"

msgstr[3] "more than 9 recipients"

/system/gettextlib/de_DE/LC_MESSAGES/mail.mo is compiled from a dot-po file with the following
ISO/IEC 8859-1 encoded contents:

msgid ""

msgstr ""

"Content-Type: text/plain; charset=ISO_8859-1\n"

"Plural-Forms: nplurals=4; plural= n==1?0: (n>1 && n< 5)?1: (n==0)?

2:3;\n"

msgid "recipient"

msgid_plural "recipients"

msgstr[0] "1 Empfänger"

msgstr[1] "2 bis 4 Empfänger"

msgstr[2] "keine Empfänger"

msgstr[3] "mehr als 4 Empfänger"

/messagecatalogs/example/en_GB/LC_MESSAGES/mail.mo is compiled from a dot-po file with the
following ISO/IEC 8859-1 encoded contents:

msgid ""

msgstr ""

"Content-Type: text/plain; charset=ISO_8859-1\n"

"Plural-Forms: nplurals=4; plural= n==1?0: (n>1 && n< 5)?1: (n==0)?

2:3;\n"

msgid "recipient"

msgid_plural "recipients"

msgstr[0] "1 recipient"

msgstr[1] "2 to 4 recipients"

msgstr[2] "no recipients"

msgstr[3] "5 or more recipients"

/messagecatalogs/example2/en_US/LC_MESSAGES/othermail.mo is not a suitable messages
object file or is a suitable messages object file that does not contain the msgid "recipient"

The following example demonstrates the interactions between bindtextdomain(),
bind_textdomain_codeset(), textdomain(), and the gettext family of functions.

unsigned long n_recipients;

// strdup() is used to prevent default_domain from being invalidated by

// a future call to bindtextdomain()

const char *default_domain = strdup(bindtextdomain("mail", NULL));

setlocale(LC_MESSAGES, "POSIX");

setlocale(LC_CTYPE, "POSIX");

n_recipients = 1;

// The following outputs "recipient" with the same encoding as the

// "recipient" argument to ngettext():

printf("%s\n", ngettext("recipient", "recipients", n_recipients));

n_recipients = 3;

// The following outputs "recipients" with the same encoding as the

// "recipients" argument to ngettext():

printf("%s\n", ngettext("recipient", "recipients", n_recipients));

setlocale(LC_MESSAGES, "en_US");

setlocale(LC_CTYPE, "en_US");

textdomain("mail");

n_recipients = 1;

// The following outputs "1 recipient", encoded in UTF-8:

printf("%s\n", ngettext("recipient", "recipients", n_recipients));

n_recipients = 3;

// The following outputs "2 to 9 recipients", encoded in UTF-8:

printf("%s\n", ngettext("recipient", "recipients", n_recipients));

setlocale(LC_MESSAGES, "en_GB");

setlocale(LC_CTYPE, "en_GB");

bindtextdomain("mail", "/messagecatalogs/example/");

n_recipients = 3;

// The following outputs "2 to 4 recipients", encoded in UTF-8:

printf("%s\n", ngettext("recipient", "recipients", n_recipients));

setlocale(LC_MESSAGES, "en_US");

setlocale(LC_CTYPE, "en_US");

textdomain("othermail");

bindtextdomain("othermail", "/messagecatalogs/example2/");

n_recipients = 3;

// The following outputs "recipients" with the same encoding as the

// "recipients" argument to ngettext():

printf("%s\n", ngettext("recipient", "recipients", n_recipients));

// Because there is no locale named en_AU on the system, en_US is used:

setenv("LANGUAGE", "en_AU:en_US:en_GB", 1);

setlocale(LC_MESSAGES, "");

setlocale(LC_CTYPE, "");

bindtextdomain("mail", default_domain);

// The following outputs "2 to 9 recipients", encoded in UTF-8:

printf("%s\n", dngettext("mail", "recipient", "recipients", 3));

textdomain("mail");

bind_textdomain_codeset("mail", "UTF-8");

setlocale(LC_MESSAGES, "de_DE");

setlocale(LC_CTYPE, "de_DE");

// Clear the LANGUAGE environment variable, otherwise it would take

// precedence over the locale set above, and en_US would continue to

// be used.

setenv("LANGUAGE", "", 1);

n_recipients = 1;

// The following outputs "1 Empfänger", encoded in UTF-8:

printf("%s\n", ngettext("recipient", "recipients", n_recipients));

bind_textdomain_codeset("mail", "ASCII");

setlocale(LC_CTYPE, "POSIX");

n_recipients = 1;

// The following outputs "recipient" with the same encoding as the

// "recipient" argument to ngettext() - remember, the system is assumed

// to not support conversion from ISO/IEC 8859-1 to ASCII:

printf("%s\n", ngettext("recipient", "recipients", n_recipients));

free(default_domain);

APPLICATION USAGE
These functions do not impose a limit on message length. Note that translated strings typically
have a different length than the input strings, possibly much longer, and applications using these
translations in formatted text (e.g., aligned columns for a table) should take that into account.

The dcgettext(), dcgettext_l(), dcngettext(), and dcngettext_l() functions are useful to retrieve locale-
specific strings for a category other than LC_MESSAGES. For example, they can be used to obtain a
time format string from the LC_TIME category; because the locale setting of LC_TIME and
LC_MESSAGES can be different, using the other gettext family functions in such a case might cause
an undesired result. All of the functions in the gettext family of functions, except dcgettext(),
dcgettext_l(), dcngettext(), and dcngettext_l(), search for messages objects only in the
LC_MESSAGES category.

Implementations typically, but are not required to, mmap() the messages object file the first time
one of the gettext family of functions is called, and keep that map in place until it is no longer
expected to be used. For example, a successful call to bindtextdomain() will typically cause the
next call to one of the gettext family of functions to munmap() the previous file and mmap() the
new file. Applications should not rely on this behavior, however: the implementation is allowed to
cache previously used maps, or not use mmap() at all and reopen the file each time one of the
gettext family of functions is called.

The msgid and msgid_plural arguments are typically in (US) English. The arguments are always
used in the POSIX or C locale, and when a gettext family function encounters an error, so they
should not be abstract message identifiers (e.g., "message 123") and they should only use
characters in the portable character set (to avoid outputting byte sequences that are not valid
characters in the current output codeset). If the xgettext utility is used to extract the msgid and
msgid_plural arguments from C source files into a template dot-po file, the arguments must be
string literals in order for the resulting file to be useful to translators.

The strings returned by the gettext family of functions are not guaranteed to contain only
characters that are valid in the current output codeset. In particular, byte sequences that do not
form valid characters can occur when:

The msgid or msgid_plural arguments use characters outside the portable character set.
The messages object file does not specify a character set and uses characters outside the
portable character set.

The strings returned by the gettext family of functions are guaranteed to remain valid until
invalidated as described in the RETURN VALUE section. This includes strings that are created by
codeset conversion; those strings are freed by the implementation, not the application. Thus, it is
safe to call gettext family functions multiple times in situations such as:

printf("%s %s\n", gettext("foo"), gettext("bar"));

RATIONALE
Although the return type of these functions ought to be const char *, it is char * to match historical
practice.

The gettext family of functions is frequently used in reporting errors. In fact, it is possible to have
an application that attempts to create an error message that combines a translated string via
gettext() with an error string provided by strerror(). The standard requires that the gettext family of
functions cannot modify errno, so that an application need not worry about complications of
providing sequencing points to capture a stable value of errno prior to the translation of the error
message, and so that the user will still get a somewhat useful string (even if it is the untranslated
original string) on any failure.

There are no wide character equivalents for these functions; historically no implementation is
known to exist, and the multi-byte message returned from these functions can, in most instances,
be converted to wide characters by the application if desired.

Some historical gettext() implementations returned the translated string from the messages object
without codeset conversion if iconv_open() fails. This is considered to be a bug in those
implementations.

FUTURE DIRECTIONS
None.

SEE ALSO
 bindtextdomain(), catopen(), iconv(), setlocale(), uselocale()

 XBD <libintl.h>, <limits.h>

 XCU gettext, msgfmt, xgettext

NAME
 bindtextdomain, bind_textdomain_codeset, textdomain — text domain manipulation functions

SYNOPSIS
#include <libintl.h>

char *bindtextdomain(const char *domainname, const char *dirname);

char *bind_textdomain_codeset(const char *domainname,
 const char *codeset);

char *textdomain(const char *domainname);

DESCRIPTION
The textdomain() function shall set or query the name of the current text domain of the calling
process. The application shall ensure that the domainname argument is either a null pointer (when
querying), an empty string, or a string that, when used by the gettext family of functions to
construct a pathname to a messages object, results in a valid pathname. For portable applications,
it should only contain characters from the portable filename character set.

The text domain setting made by the last successful call to textdomain() shall remain in effect
across subsequent calls to setlocale(), uselocale(), and the gettext family of functions.

Applications should not use text domains whose names begin with the strings "SYS_" or "libc".
These prefixes are reserved for implementation use.

The current setting of the text domain can be queried without affecting the current state of the
domain by calling textdomain() with domainname set to a null pointer. Calling textdomain() with a
domainname argument of an empty string shall set the text domain to the default domain,
"messages".

The bindtextdomain() function shall set or query the binding of a text domain to a dirname that is
used by the gettext family of functions to construct a pathname to a messages object in the text
domain:

If domainname is a null pointer or an empty string, bindtextdomain() shall make no changes and
return a null pointer without changing errno.
Otherwise, if dirname is a non-empty string:

If domainname is not already bound, bindtextdomain() shall bind the text domain specified
by domainname to the pathname pointed to by dirname and return the bound directory
pathname on success or a null pointer on failure.

If domainname is already bound, bindtextdomain() shall replace the existing binding with the
pathname pointed to by dirname and return the bound directory pathname on success or a
null pointer on failure. On failure, the existing binding shall remain unchanged.

It is unspecified whether the bindtextdomain() function performs pathname resolution on
dirname, or whether that is done by the gettext family of functions.

Otherwise, if dirname is a null pointer:
If domainname is bound, the function shall return the bound directory pathname.
If domainname is not bound, the function shall return the implementation-defined default
directory pathname used by the gettext family of functions.

Otherwise, dirname is an empty string and the behavior is unspecified.
If a text domain is bound to a relative pathname and the current working directory is changed after
the binding is established, the pathnames used by the gettext family of functions to locate
messages objects for that text domain are unspecified.

The bind_textdomain_codeset() function shall set or query the binding of a text domain to the
output codeset used by the gettext family of functions for message strings retrieved from
messages objects for the text domain specified by domainname:

If domainname is a null pointer or an empty string, bind_textdomain_codeset() shall make no
changes and return a null pointer without changing errno.
Otherwise, if codeset is a non-empty string:

If domainname is not already bound, bind_textdomain_codeset() shall bind the text domain
specified by domainname to the codeset pointed to by codeset and return the newly bound
codeset on success or a null pointer on failure.
If domainname is already bound, bind_textdomain_codeset() shall replace the existing
binding with the codeset pointed to by codeset and return the newly bound codeset on
success or a null pointer on failure. On failure, the existing binding shall remain unchanged.

The application shall ensure that the codeset argument, if non-empty, is a valid codeset name
that can be used as the tocode argument of the iconv_open() function, and that in the codeset it
specifies, the <NUL> character corresponds to a single null byte.
Otherwise, if codeset is a null pointer:

If domainname is bound, the function shall return the bound codeset.
If domainname is not bound, the function shall return the implementation-defined default
codeset used by the gettext family of functions.

Otherwise, codeset is an empty string and the behavior is unspecified.

If codeset is a null pointer and domainname is a non-empty string, bind_textdomain_codeset()
shall return the current codeset for the named domain, or a null pointer if a codeset has not yet
been set. The bind_textdomain_codeset() function can be called multiple times. If successfully
called multiple times with the same domainname argument, the last such call shall override the
setting made by the previous such call.

RETURN VALUE
The return value from a successful textdomain() call shall be a pointer to a string containing the
current setting of the text domain. If domainname is a null pointer, textdomain() shall return a
pointer to the string containing the current text domain. If textdomain() was not previously called
and domainname is a null string, the name of the default text domain shall be returned. The name
of the default text domain shall be the string "messages". If textdomain() fails, a null pointer shall
be returned and errno shall be set to indicate the error.

For bindtextdomain() return values see the DESCRIPTION. When bindtextdomain() is called with a
non-empty domainname and returns a null pointer, it shall set errno to indicate the error. When
bindtextdomain() returns a pathname for a bound text domain, the return value shall be a pointer to
a copy of the dirname string passed to the bindtextdomain() call that created the binding. The
returned string shall remain valid until the next successful call to bindtextdomain() with a non-
empty dirname and same domainname. The application shall ensure that it does not modify the
returned string.

A call to the bind_textdomain_codeset() function with a non-empty domainname argument shall
return one of:

 the currently bound codeset name for that text domain if codeset is a null pointer,
the newly bound codeset if codeset is non-empty,
a null pointer without changing errno if no codeset has yet been bound for that text domain.

The application shall ensure that it does not modify the returned string. A subsequent call to
bind_textdomain_codeset() with a non-empty domainname argument might invalidate the returned
pointer or overwrite the string content. The returned pointer might also be invalidated if the calling
thread is terminated. If bind_textdomain_codeset() fails, a null pointer shall be returned and errno
shall be set to indicate the error.

ERRORS
For the conditions under which bindtextdomain()—if it performs pathname resolution—fails and
may fail, refer to [xref to open()].

In addition, the textdomain(), bindtextdomain(), and bind_textdomain_codeset() functions may fail
if:

[ENOMEM]

Insufficient memory available.

EXAMPLES
See the examples for [xref to gettext].

APPLICATION USAGE
A text domainname is limited to {TEXTDOMAIN_MAX} bytes.

Application developers are responsible for ensuring that the text domain used is not used by other
applications. To minimize the chances of collision, developers can prefix text domains with their
company or application name (or both) and an underscore. For example, if your application name
was "foo" and you wanted to use the text domain "errors", you could instead use the text domain
"foo_errors". Note: If an application can be installed with a configurable name, a text domain prefix
based on the application name should change with the application name.

Specifying a relative pathname to the bindtextdomain() function should be avoided, since it may
result in messages objects being searched for in a directory relative to the current working
directory of the calling process; if the process calls the chdir() function, the directory searched for
may also be changed.

Since pathname resolution of dirname might not be performed by bindtextdomain(), but could be
performed later by the gettext family of functions, and since the latter have no way to report an
error, applications should verify, using for example stat(), that the directory is accessible if this is
desired.

RATIONALE
Although the return type of of these functions ought to be const char *, it is char * to match
historical practice.

Pathname resolution of the dirname argument passed to bindtextdomain() may be performed by
bindtextdomain() itself or by the gettext family of functions. If pathname resolution fails in one of
the gettext family of functions, it is neither allowed to modify errno nor to return an error, but if
pathname resolution fails in bindtextdomain(), it is required to report an error and set errno just like
open() does.

Historically, bindtextdomain() did not perform pathname resolution. However, the standard
developers decided to allow this as an option so that future implementations can, if desired, open a
file descriptor for that directory in bindtextdomain() and then use that file descriptor with openat()
in the gettext family of functions.

The dirname parameter to bindtextdomain() may need to be copied to avoid the possibility of the
application releasing the memory used by the argument while the gettext family of functions may
still need to reference it.

When bindtextdomain() is called with a non-empty domainname and an empty dirname, historical
implementations of the gettext family of functions use the empty string for the dirname part of the

messages object pathname, resulting in an absolute pathname of the form
/localename/categoryname/textdomainname.mo. The standard developers did not believe this
behavior to be useful. Using the empty dirname case as a way to remove an existing binding
seemed to be a more useful behavior, and would be consistent with the behavior of textdomain().
However, because no historical implementations behave this way, the behavior is left unspecified.

Some implementations set errno to [EAGAIN] to signal memory allocation failures that might
succeed if retried and [ENOMEM] for failures that are unlikely to ever succeed, for example due to
configured limits. Section 2.3 (on page xxx) permits this behavior; when multiple error conditions
are simultaneously true there is no precedence between them.

FUTURE DIRECTIONS
A future version of this standard may require implementations to prefix implementation-provided
text domains with either SYS_ or a prefix related to the implementor's company name to avoid
namespace collisions.

A future version of this standard may require bindtextdomain() to remove any binding for
domainname when called with a non-empty domainname and an empty dirname.

SEE ALSO
gettext(), iconv_open(), setlocale(), uselocale()

XBD <libintl.h>, <limits.h>

XCU msgfmt, xgettext

Create pointer pages for:
dcgettext, dcgettext_l, dcngettext, dcngettext_l, dgettext, dgettext_l
dngettext, dngettext_l
ngettext, ngettext_l
textdomain

NAME
 gettext, ngettext — retrieve text string from messages object

SYNOPSIS
gettext [-e|-E] [-d textdomain] [textdomain] msgid

gettext [-e|-E] [-n] -s [-d textdomain] msgid...

ngettext [-e|-E] [-d textdomain] [textdomain] msgid msgid_plural n

DESCRIPTION
The gettext and ngettext utilities shall write to standard output the message string(s) that would
result from the following calls to functions defined in the System Interfaces volume of POSIX.1-
202x:

if (textdomainname == NULL || textdomainname[0] == '\0')

 message_string = msgid;

else {

 setlocale(LC_ALL, "");

 if (textdomaindir != NULL)

 bindtextdomain(textdomainname, textdomaindir);

 if (msgid_plural == NULL)

 message_string = dgettext(textdomainname, msgid);

 else

message_string = dngettext(textdomainname, msgid, msgid_plural,

n);

}

where:

The textdomaindir variable is a string containing the value of the TEXTDOMAINDIR environment
variable, if set and not empty, or is NULL otherwise.

The textdomainname variable is a string containing either the text domain name obtained from,
in decreasing order of precedence:

 the optional operand textdomain, if present
 the -d textdomain option, if specified
 the TEXTDOMAIN environment variable, if set and not empty

If the text domain name cannot be obtained from these sources, the textdomainname variable is
NULL.

If the -s option of gettext is not specified and for the ngettext utility, the msgid variable is a
string containing:

The value of the msgid operand, if the -E option is specified
The value of the msgid operand with C-language escape sequences processed (see below),
if the -e option is specified

The value of the msgid operand with C-language escape sequences optionally processed
(see below), otherwise.

If the -s option of gettext is specified, the msgid variable is a string containing:
The value of each msgid operand in turn, if the -E option is specified or neither the -e nor the
-E option is specified
The value of each msgid operand in turn with C-language escape sequences processed (see
below), if the -e option is specified.

For the gettext utility, the msgid_plural variable is NULL. For the ngettext utility, the msgid_plural
variable is a string containing:

The value of the msgid_plural operand, if the -E option is specified
The value of the msgid_plural operand with C-language escape sequences processed (see
below), if the -e option is specified
The value of the msgid_plural operand with C-language escape sequences optionally
processed (see below), otherwise.

For the gettext utility, n is one. For the ngettext utility the n variable is the n operand, parsed as
an integer as if by using the strtoul() function with a base argument of 10.

When C-language escape sequences are processed, they shall be processed as specified for
character string literals in the ISO C standard, except that universal-character-name escape
sequences need not be supported. Implementations may also support a <backslash> 'c' escape
sequence; if supported, the '\c' and all characters following it shall be removed and, if the -s option
is specified, the behavior shall be as if the -n option is also specified.

For the ngettext utility, and for the gettext utility if the -s option is not specified, the resulting
message string shall be written to standard output. If the -s option of gettext is specified, the
resulting message string for each msgid shall be written to standard output with consecutive
message strings separated by a single <space> character and, if the -n option is not specified, a
<newline> shall be written after the last message string. If the -s and -n options are specified, the
trailing <newline> shall be omitted.

Under conditions where the textdomainname variable in the above code would be NULL, these
utilities may write a diagnostic message to standard error and exit with non-zero status.

OPTIONS
These utilities shall conform to XBD Section 12.2 (on page XXX).

The following options shall be supported:

-d textdomain
Retrieve the translated message from the domain textdomain, if textdomain is not
specified as an operand.

-e
Process C-language escape sequences in msgid and msgid_plural operands.

-E
Do not process C-language escape sequences in msgid and msgid_plural operands.

 The gettext utility shall also support the following options:

 -n

Modify the behavior of the -s option such that a <newline> is not appended to the output.
 -s

Separate the message strings obtained from each msgid operand with <space>
characters in the output, and (if -n is not also specified) append a <newline> to the
output.

If neither of the mutually exclusive -e and -E options is specified, it is unspecified which is the
default, except that if the -s option of gettext is specified then -E shall be the default.

OPERANDS
 The following operands shall be supported:

textdomain
A text domain name used to retrieve the translated message. This shall override the
specification by the -d option, if present.

msgid

A key to retrieve the translated message.

msgid_plural
A default plural if no corresponding plural message can be found.

n

A non-negative decimal integer to be used as the n argument to dngettext() (see the
DESCRIPTION).

STDIN
Not used.

INPUT FILES
The input files are messages object files (see [xref to msgfmt]).

ENVIRONMENT VARIABLES
 LANG

Provide a default value for the internationalization variables that are unset or null. (See
[xref to XBD Section 8.2] for the precedence of internationalization variables used to
determine the values of locale categories.)

 LANGUAGE

Determine the location of messages objects [XSI]if NLSPATH is not set or the evaluation
of NLSPATH did not lead to a suitable messages object being found[/XSI].

 LC_ALL

If set to a non-empty string value, override the values of all the other internationalization
variables.

 LC_MESSAGES

Determine the locale name used to locate messages objects, and the locale that should
be used to affect the format and contents of diagnostic messages written to standard
error.

[XSI]NLSPATH

Determine the location of messages objects and message catalogs.[/XSI]

TEXTDOMAIN

Specify the text domain name. (See [xref to XBD 3.403].)

TEXTDOMAINDIR
Specify the pathname to the messages object hierarchy.[XSI] NLSPATH shall have
precedence over TEXTDOMAINDIR.[/XSI]

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR

The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

 0 Successful completion.
>0 An error occurred.

CONSEQUENCES OF ERRORS
 Default.

APPLICATION USAGE
Since it is unspecified which of the -e or -E options is the default, except when the -s option of
gettext is specified, portable applications need to ensure that -e, -E, or (for gettext) -s is specified
whenever a msgid or msgid_plural operand contains, or might contain, a <backslash> character.

Note that, unless the -s option of gettext is specified without -n, the message(s) written to
standard output are not followed by a <newline>. (Therefore the output only ends with a <newline>
if the last message ends with one.)

Both msgid and msgid_plural should be properly quoted for the shell.

EXAMPLES
The following examples assume that the following portable messages object source file (dot-po
file) has been compiled to a valid file mail.mo by the msgfmt utility. See the EXTENDED
DESCRIPTION section of the msgfmt utility for a description of the dot-po file format.

msgid ""

msgstr ""

"Content-Type: text/plain; charset=utf-8\n"

"Plural-Forms: nplurals=4; plural=n==1?0: (n>1&&n<=10)?1: (n==0)?2:3;\n"

msgid "recipient"

msgid_plural "recipients"

msgstr[0] "1 recipient"

msgstr[1] "2 to 10 recipients"

msgstr[2] "no recipients"

msgstr[3] "more than 10 recipients"

msgid "%d attachment\n"

msgid_plural "%d attachments\n"

msgstr[0] "1 (%d) attachment\n"

msgstr[1] "2 to 10 (%d) attachments\n"

msgstr[2] "no (%d) attachments\n"

msgstr[3] "more than 10 (%d) attachments\n"

They also assume that mail.mo is installed in the directory that gettext and ngettext search for the
current locale. See the options and environmental variables above and the description of gettext()
for details on how this search is performed.

The command

ngettext -d mail recipient recipients 0
will write "no recipients".

The command

ngettext -d mail recipient recipients 1
will write "1 recipient".

The command

ngettext -d mail recipient recipients 5
will write "2 to 10 recipients ".

The command

ngettext -d mail recipient recipients 11
will write "more than 10 recipients".

The command

ngettext -d mail Call Calls 1
will write "Call". Note that "Call" is not in the messages object.

The command

ngettext -d mail Call Calls 0

will write "Calls".

The command
ngettext -d mail Call Calls 10
will write "Calls".

The command

ngettext -e -d mail "%d attachment\n" "%d attachments\n" 1
will write the same as
printf "1 (%%d) attachment\n"
(i.e. "1 (%d) attachment" followed by a <newline> character). The output of ngettext can be used as
a format string for printf.

The command
printf "$(ngettext -e -d mail "%d attachment\n" "%d attachments\n" 1)" 10

will write the same as
printf "1 (%d) attachment\n" 10
(i.e. "1 (10) attachment" followed by a <newline> character).

The command

ngettext -e -d mail "\tsubject\n" "\tsubjects\n" 0
will write the same as
printf "\tsubjects\n"

(i.e. a <tab> character, followed by "subjects" followed by a <newline> character). Note that
"\tsubject\n" is not in the messages object.

The command

printf "%s\n" "$(ngettext -E -d mail "subject" "subjects" 0)"
will write the same as
printf "subjects\n"

(i.e. "subjects" followed by a <newline> character). Note that "subject" is not in the messages
object.

The command
gettext -s -d mail "recipient"

will write "1 recipient" followed by a <newline> character.

The command
gettext -s -n -d mail "recipient"

will write "1 recipient" without a <newline> character.

RATIONALE
Historical implementations did not support the '\a' C-language escape sequence. This standard
requires it to be supported for consistency with other utilities that support the table in XBD Chapter
5 (on page NNN).

Unlike other standard utilities, the behavior of gettext and ngettext is not undefined when NLSPATH
overrides the system default path; see XBD Section 8.2 (on page NNN). This is so that applications
can use these utilities to obtain message strings from messages objects in other locations.
However, it also means that they need to be implemented in such a way that they do not do
anything that would result in undefined behavior when they need to write a diagnostic message. In
particular, they should not use a string obtained from a message catalog or a messages object as a
format string (or should only do so after checking that the string contains the correct conversions).

FUTURE DIRECTIONS
None.

SEE ALSO
 msgfmt, printf

 XBD Chapter 7 (on page NNN), Chapter 8 (on page NNN)

 XSH gettext, iconv(), setlocale()

NAME
 msgfmt — create messages objects from portable messages object source files

SYNOPSIS
msgfmt [-cfSv] [-D dir] [-o outputfile] pathname...

DESCRIPTION
The msgfmt utility shall create messages object files from portable messages object source files
(dot-po files).

A dot-po file contains messages to be output by system commands or by applications. The
messages in these files should be able to be translated to any language supported by the system.

The msgfmt utility shall interpret message strings for output as characters according to the
codeset specified in the dot-po file or, if not present, the current setting of the LC_CTYPE locale
category.

OPTIONS
The msgfmt utility shall conform to XBD Section 12.2 (on page XXX).

The following options shall be supported:

-c

If this option and -v are both specified, msgfmt shall detect and diagnose input file
abnormalities which might represent translation errors. The msgid and msgstr strings
shall be compared. It shall be considered abnormal if one string starts or ends with a
<newline> while the other does not. Also, if the flag c-format appears in a "#," comment
for a msgid directive (see EXTENDED DESCRIPTION), it shall be considered abnormal if
the strings do not have the same number of '%' conversion specifiers, or if corresponding
conversion specifiers take different argument types (see [xref to fprintf()]). If an
abnormality is detected, the exit status shall be non-zero and a diagnostic message shall
be output. Additional checks beyond those described here may also be performed.
These checks may produce diagnostics or informational messages and need not affect
the exit status. If -c is specified without -v or -v is specified without -c, the behavior is
unspecified.

-D dir

Add dir to the list of directories to search for input files.

-f
Use fuzzy entries in output. If this option is not specified, fuzzy entries shall not be
included in the output.

-o outputfile
Specify the name of an output file to be used instead of the default filename(s) specified
in EXTENDED DESCRIPTION. All domain domainname directives in the dot-po file(s) shall
be ignored.

-S
Append the suffix .mo to each generated messages object filename if it does not have
this suffix.

-v
See -c.

OPERANDS
The following operand shall be supported:

pathname A pathname of a dot-po file.

STDIN
Not used.

INPUT FILES
The input files shall be text files in the format described in EXTENDED DESCRIPTION.

ENVIRONMENT VARIABLES
LANG

Provide a default value for the internationalization variables that are unset or null. (See
[xref to XBD Section 8.2] for the precedence of internationalization variables used to
determine the values of locale categories.)

LANGUAGE

Determine the location of messages objects [XSI]if NLSPATH is not set or the evaluation
of NLSPATH did not lead to a suitable messages object being found[/XSI].

LC_ALL

If set to a non-empty string value, override the values of all the other internationalization
variables.

LC_CTYPE
Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in arguments
and input files).

LC_MESSAGES

Determine the locale name used to locate messages objects, and the locale that should
be used to affect the format and contents of diagnostic messages written to standard
error.

[XSI]NLSPATH

Determine the location of messages objects and message catalogs.[/XSI]

ASYNCHRONOUS EVENTS

Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic messages and may also be used for warning
messages. If the -c and -v options are specified, additional unspecified informational messages
may be written to standard error.

OUTPUT FILES
The format of the created messages object files is unspecified.

EXTENDED DESCRIPTION
The msgfmt utility shall accept portable messages object source files (dot-po files) in the following
format.

A dot-po file contains zero or more lines, with each non-blank line containing a comment, a
statement, or a statement continuation. A comment has an unquoted <number-sign> ('#') as the
first non-<blank> character and ends with the next <newline> character. A statement continuation is
a double-quoted string on a line by itself, optionally preceded and/or followed by <blank>
characters, and the string shall be concatenated with the string on the previous statement line. If a
comment occurs between a statement and a statement continuation, the behavior is unspecified.
All other comments, except for comments beginning with <number-sign><comma> ("#,"), and blank
lines shall be ignored.

The format of a statement is:

 directive value

The directive starts at the first non-<blank> character of the line and is separated from the value by
one or more <blank> characters. The value consists of a double-quoted string optionally followed
by <blank> characters. Zero or more statement continuation lines (see above) can follow the
statement. The following directives shall be supported:

 domain domainname
 msgid message_identifier
 msgid_plural untranslated_string_plural
 msgstr message_string
 msgstr[index] message_string

A dot-po file consists of zero or more sections. Each section specifies the messages to be
processed in a domain. The first directive in each section shall be a domain directive (except for
the first section which shall behave as if

domain "messages"

had been specified if the first directive is not a domain directive).

The behavior of the domain directive is affected by the options used. See OPTIONS for the behavior
when the -o option is specified. If the -o option is not specified, all data obtained from the non-
domain directives in a dot-po section shall be output to the messages object file named
domainname.mo when the -S option is specified. When the -S option is not specified, it is
implementation-defined whether domainname or domainname.mo is used.

If multiple domain directives specify the same domainname, the sections shall be processed as if
there was only one section that starts with a domain domainname statement which contained the
statements of the sections, in the same order, excluding all but the first domain domainname
statement.

Within each section, there can be a header. A header is identified by having a msgid directive with
the empty string ("") as the message_identifier immediately followed by a statement containing a
msgstr directive. The message_string in this msgstr statement in a header shall be treated
specially. If message_string contains a specification of the form:

 "nplurals=count; plural=expression"
count indicates the number of plural forms for messages in that domain, and expression is a C
language expression that evaluates to an unsigned integer value which determines the
msgstr[index] directive to be used. The value of expression is used as the index value. The variable
n in expression is assigned the value of the n argument to the ngettext(), ngettext_l(), dngettext(),
dngettext_l(), dcngettext(), and dcngettext_l() functions or of the n operand of the ngettext utility
before expression is evaluated. The application shall ensure that expression evaluates to a non-
negative value less than count for all n that can be supplied by the aforementioned functions and
utilities.

If message_string in the header contains a specification of the form:

"charset=codeset"
codeset indicates the codeset to be used to encode the message strings in this section's domain
(overriding LC_CTYPE). If the output string's codeset is different from the message string's codeset,
codeset conversion from the message string's codeset to the output string's codeset shall be
performed by the gettext family of functions and by the gettext and ngettext utilities. See [xref to
XSH gettext] and [xref to gettext]. The output string's codeset shall be determined by the current or
specified locale's codeset.
<small>Note: it is the responsibility of translators to ensure that the characters they enter into
message strings in a dot-po file are encoded in the codeset specified in the header.</small>

If a header is present in a section, the application shall ensure that the header is provided by the
first msgid directive in that section.

After the header, if present, zero or more messages are identified by a msgid directive with a
message_identifier that is not an empty string. Each of these directives start a subsection that is
used to get a translated message from the gettext family of functions and from the gettext and
ngettext utilities. If the message_identifier string is the string identified by the gettext family of
functions msgid argument or by the gettext and ngettext utility msgid operand, this subsection
specifies how that translation is to be processed.

If there is only a singular form for the given message_identifier, the application shall ensure that the
statement containing the msgid directive is immediately followed by a msgstr directive.

If there are plural forms for the given message_identifier and the header for this section exists and
contains an "nplurals=count; plural=expression" specification, the application shall ensure that the
statement containing the msgid directive is immediately followed by a msgid_plural directive and
that each statement containing a msgid_plural directive is followed by count statements containing
msgstr[index] directives, starting with msgstr[0] and ending with msgstr[count-1] in monotonically
increasing order. If a header for this section does not exist or does not contain an "nplurals=count;
plural=expression" specification, the application shall ensure that no msgid_plural or msgstr[index]
directives are used in this section.

For example, if the header's message_string contains the specification:

 "nplurals=2; plural= n == 1 ? 0 : 1"

there are two forms in the domain; msgstr[0] is used if n is equal to 1, otherwise msgstr[1] is used.
For another example, if the header's message_string contains:

 "nplurals=3; plural= n == 1 ? 0 : n == 2 ? 1 : 2"

there are three forms in the domain; msgstr[0] is used if n is equal to 1, msgstr[1] is used if n is
equal to 2, otherwise msgstr[2] is used.

C-language escape sequences in strings shall be processed as specified for character string literals
in the ISO C standard, except that universal-character-name escape sequences need not be
supported.

Comments in a dot-po file can be in one of the following formats:

#: reference
#. utility-added-comments
#, flag

#translator-comments (where translator-comments does not begin with '.', ':' or ',')

A "#:" reference comment indicates the location(s) of the msgid string in the source files, in
pathname1:linenumber1 [pathname2:linenumber2 ...] format. They can be added, as might "#."
prefixed additional comments of unspecified format, by the xgettext utility. All comments that do
not begin with "#," are informative only and shall be silently ignored by the msgfmt utility. In "#,"
comments the following flags can be specified:

 fuzzy
This flag indicates that the msgstr string might not be a correct translation at this point
in time. Only the translator can judge if the translation requires further modification or is
acceptable as is. Once satisfied with the translation, the translator should remove this
fuzzy flag. If this flag is specified, the msgfmt utility shall not generate the entry for the
next following msgid in the output message catalog, unless the -f option is specified. If
other flag comments are specified between fuzzy and the msgid, the behavior is
unspecified.

 c-format
 no-c-format

The c-format flag indicates that the next following msgid string contains a printf() format
string. When the c-format flag is given and the -c and -v options are specified, the
msgfmt utility shall perform additional tests to check the validity of the translation (see
OPTIONS); these additional tests may also be performed if neither c-format nor no-c-
format is given. When the no-c-format flag is given for a string, no additional checks shall
be performed for the string. When both the c-format and the no-c-format flags are given,
the last flag specified takes precedence.

EXIT STATUS
The following exit values shall be returned:

 0 Successful completion.
>0 An error occurred.

CONSEQUENCES OF ERRORS
The msgfmt utility need not continue processing later pathname operands when an error condition
that affects the exit status is detected. It is unspecified whether a messages object file is written
when checks performed for the -c and -v options fail.

APPLICATION USAGE
 The xgettext utility can be used to create template dot-po files from C-language source files.

Installing messages object files for the POSIX or C locale is not recommended, since they may be
ignored for the sake of efficiency.

The first section for each domain in a dot-po file should include a header containing a
charset=codeset specification. If this specification is omitted, message conversions in the gettext
family of functions and in the gettext and ngettext utilities may fail.

The msgid_plural directive's untranslated_string_plural string comes from the msgid_plural
arguments in calls to the ngettext(), ngettext_l(), dngettext(), dngettext_l(), dcngettext(), and
dcngettext_l() functions when a prototype dot-po file is created by the xgettext utility. These strings
(and the msgid_plural operands in calls to the ngettext utility) can provide context when a translator
is modifying a template dot-po file into a dot-po file for a specific language. These functions and
the ngettext utility do not try to match the msgid_plural arguments or operands with anything in a
messages object file; they only match the msgid arguments and operands.

Unlike shell command language strings, double-quoted strings in dot-po files cannot contain a
literal <newline> character.

EXAMPLES
 In this example, module1.po and module2.po are portable messages object source files.

$ cat module1.po
default domain "messages"

msgid ""
msgstr "charset=utf-8"
msgid "msg 1"
msgstr "msg 1 translation"
#
domain "help_domain"

msgid ""
msgstr "charset=utf-8"
msgid "help 2"
msgstr "help 2 translation"
#
domain "error_domain"

msgid ""
msgstr "charset=utf-8"
msgid "error 3"
msgstr "error 3 translation"

$ cat module2.po

default domain "messages"

msgid ""
msgstr "charset=utf-8"
msgid "mesg 4"
msgstr "mesg 4 translation"
#
domain "error_domain"

msgid ""
msgstr "charset=utf-8"
#, c-format
msgid "error 5 %s"
msgstr "error 5 translation %s"
#
domain "window_domain"

msgid ""
msgstr "charset=utf-8"
msgid "window 6"
msgstr "window 6 translation"

$ cat module3.po
default domain "messages"
header will be used for the whole output file in the third example

msgid ""
msgstr "charset=utf-8"
msgid "info 0"
msgstr "info 0 translation"

$ cat opt_debug.po
#
domain "debug_domain"
msgid "debug 8"
msgstr "debug 8 translation"

The following command will produce the output files messages.mo, help_domain.mo, and
error_domain.mo:

$ msgfmt -S module1.po

The following command will produce the output files messages.mo, help_domain.mo,
error_domain.mo, and window_domain.mo:

$ msgfmt -S module1.po module2.po

The following command will produce the output file hello.mo:

$ msgfmt -o hello.mo module3.po opt_debug.po

RATIONALE
Some implementations are less strict about the format of dot-po files and simply treat all
occurrences of one or more white space characters as a separator. The format described in this
standard is accepted by all known implementations.

In some implementations, duplicate msgid directives within a domain are ignored, and only an entry
for the first msgid directive and the following msgid, msgid_plural, msgstr or msgstr[index]
directives is created. However, some implementations consider duplicate msgid directives within a
domain to be an error and do not produce output at all. Consequently this standard does not
specify the behavior of msgfmt if duplicate msgid directives are encountered within one domain.

FUTURE DIRECTIONS
None.

SEE ALSO
 gettext, xgettext

XSH fprintf(), gettext

Create a pointer page for ngettext

NAME
 xgettext — extract gettext call strings from C-language source files (DEVELOPMENT)

SYNOPSIS
[CD] xgettext [-j] [-n] [-d default-domain] [-K keyword-spec]... [-p
pathname] file...

 xgettext -a [-n] [-d default-domain] [-p pathname] [-x exclude-file]
file... [/CD]

DESCRIPTION
The xgettext utility shall automate the creation of portable messages object source files (dot-po
files). A dot-po file shall contain copies of string literals that are found in C-language source code in
files specified by file operands. The dot-po file can be used as input to the msgfmt utility, to produce
a messages object file that can be used by applications.

The xgettext utility shall write msgid argument strings that are passed as string literals in gettext(),
gettext_l(), ngettext(), and ngettext_l() calls in C-language source code to the default output file; this
file is named messages.po unless it is changed by the -d option. The xgettext utility shall also
write msgid argument strings that are passed as string literals in dcgettext(), dcgettext_l(),
dcngettext(), dcngettext_l(), dgettext(), dgettext_l(), dngettext(), and dngettext_l() calls either to the
default output file or to the output file domainname.po where domainname is the first parameter to
the call; it is implementation-defined which of those output files is used. A msgid directive shall
precede each msgid argument string. For the functions that have a msgid_plural argument, a
msgid_plural directive followed by that argument string shall also be written directly after the
corresponding msgid directive. A msgstr directive or msgstr[index] directives with an empty string
shall be written after the corresponding msgid or msgid_plural directive, respectively. The function
names that xgettext searches for can be changed using the -K option.

The first directive in each created dot-po file shall be a domain directive giving the associated
domain name, except that this directive is optional in the default output file.

If the -p pathname option is specified, xgettext shall create the dot-po files in the pathname
directory. Otherwise, the dot-po files shall be created in the current working directory.

The msgid values shall be in the same order that the strings are extracted from each file and
subsections with duplicate msgid values shall be written to the dot-po files as comment lines.

OPTIONS
The xgettext utility shall conform to XBD Section 12.2 (on page XXX).

The following options shall be supported:
-a

Extract all strings, not just those found in calls to gettext family functions. Only one dot-
po file shall be created.

-d default-domain

Name the default output file default-domain.po instead of messages.po.

-j

Join messages from C-language source files with existing dot-po files. For each dot-po
file that xgettext writes messages to, if the file does not exist, it shall be created. New
messages shall be appended but any subsections with duplicate msgid values except the
first (including msgid values found in an existing dot-po file) shall either be commented
out or omitted in the resulting dot-po file; if omitted, a warning message may be written
to standard error. Domain directives in the existing dot-po files shall be ignored; the
assumption is that all previous msgid values belong to the same domain. The behavior is
unspecified if an existing dot-po file was not created by xgettext or has been modified by
another application.

-K keyword-spec
Specify an additional keyword to be looked for:

If keyword-spec is an empty string, this shall disable the use of default keywords for
the gettext family of functions.

If keyword-spec is a C identifier, xgettext shall look for strings in the first argument of
each call to the function or macro keyword-spec.

If keyword-spec is of the form id:argnum, xgettext shall treat the argnum-th argument
of a call to the function or macro id as the msgid argument, where argnum 1 is the
first argument.

If keyword-spec is of the form id:argnum1,argnum2, xgettext shall treat strings in the
argnum1-th argument and in the argnum2-th argument of a call to the function or
macro id as the msgid and msgid_plural arguments respectively.

For all mentioned forms, the application shall ensure that if argnum2 is given, it is not
equal to argnum1. All numeric values shall be converted as specified in [xref to XBD 12.1]
item 6.

-n
Add comment lines to the output file indicating pathnames and line numbers in the
source files where each extracted string is encountered. These lines shall appear before
each msgid directive. Such comments should have the format #: pathname1:linenumber1
[pathname2:linenumber2 ...].

-p pathname
Create output files in the directory specified by pathname instead of in the current
working directory.

-x exclude-file

Specify a file containing strings that shall not be extracted from the input files. The
format of exclude-file is identical to that of a dot-po file. However, only statements
containing msgid directives in exclude-file shall be used. All other statements shall be
ignored.

OPERANDS
The following operand shall be supported:

file

A pathname of an input file containing C-language source code. If '−' is specified for an
instance of file, the standard input shall be used.

STDIN
The standard input shall not be used unless a file operand is specified as '−'.

INPUT FILES
The input files specified as file operands shall be C-language source files. The input file specified as
the option-argument for the -x option shall be a dot-po file in the format specified as input for the
msgfmt utility.

ENVIRONMENT VARIABLES
LANG

Provide a default value for the internationalization variables that are unset or null. (See
[xref to XBD Section 8.2] for the precedence of internationalization variables used to
determine the values of locale categories.)

LANGUAGE

Determine the location of messages objects [XSI]if NLSPATH is not set or the evaluation
of NLSPATH did not lead to a suitable messages object being found[/XSI].

LC_ALL

If set to a non-empty string value, override the values of all the other internationalization
variables.

LC_CTYPE

Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in arguments
and input files).

LC_MESSAGES
Determine the locale name used to locate messages objects, and the locale that should
be used to affect the format and contents of diagnostic messages written to standard
error.

[XSI]NLSPATH

Determine the location of messages objects and message catalogs.[/XSI]

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used for diagnostic messages and may be used for warning messages.

OUTPUT FILES
The output files shall be dot-po files in the format specified as input for the msgfmt utility. It is
unspecified whether each output file includes a header (msgid "") before the content derived from
the input C-language source files.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

 0 Successful completion.
>0 An error occurred.

CONSEQUENCES OF ERRORS
 Default.

APPLICATION USAGE

Implementations differ as to whether they write all output to the default output file or split the
output into separate per-domain files. Portable applications can either ensure that each C-language
source file contains calls to gettext family functions for only a single domain, or force all output to
be to the default output file by using the -K option to override the default keywords.

Some implementations of xgettext are not able to extract cast strings (unless -a is used), for
example casts of literal strings to (const char *). Use of a cast is unnecessary anyway, since the
prototypes in <libintl.h> already specify this type.

The xgettext utility is not required to handle C preprocessor directives. Therefore if, for example,
calls to gettext family functions are wrapped by macros, they might not be found unless the -K
option is used to tell xgettext to look for the macro calls.

EXAMPLES
Example 1
The following example shows how -K can be used to force all output to be to the default output file:

xgettext -K "" -K gettext:1 -K dgettext:2 -K dcgettext:2 \

-K ngettext:1,2 -K dngettext:2,3 -K dcngettext:2,3 source.c

By overriding the default keywords using the -K option as above, the xgettext utility is directed to
ignore the domainname arguments to the dgettext(), dcgettext(), dngettext() and dcngettext()
functions. Thus, the utility treats the functions as their respective equivalent without the d prefix,
ignoring the domainname argument and writing generated output to the default output file,
messages.po. Additional -K options would be needed for the variants of the functions with an _l
suffix if they are used.

Example 2
If the source uses a macro definition such as:

#define i18n gettext

the use of:

xgettext -K i18n:1 source.c

will pick up msgid values from a line such as:

fprintf(stdout, i18n("The value is %s"), value1);

RATIONALE
The -K option is based on the -k option of GNU xgettext; the only difference is that GNU's -k takes
an optional option-argument whereas -K in this standard has a mandatory option-argument in order

to comply with the syntax guidelines.

The standard developers considered including functionality equivalent to the -c, -m, and -M options
in existing implementations. However, those letters could not be used as the syntax differed
between implementations. The usual solution of adding an uppercase equivalent of lowercase
options with the standard syntax instead was not possible, for obvious reasons for -m and -M, and
as -C was already in use for another purpose in one implementation.

The -s option is not included as it has been deprecated in at least one implementation because it
has been found to deprive translators of valuable context.

FUTURE DIRECTIONS
A future version of this standard may change the description of the -n option to use "shall" instead
of "should".

SEE ALSO
 gettext, msgfmt

 XSH gettext

Global change for all utilities: NLSPATH text should not require that diagnostic messages come from
message catalogues, but should allow messages objects as well. New text should be consistent with
the new XCU pages above, as in change them to match:

[XSI]NLSPATH
Determine the location of messages objects and message catalogs.[/XSI]

In XRAT section E.1 on page 3791 line 130096, merge the following into the POSIX_I18N subprofiling
option group alphabetically:

bindtextdomain(), bind_textdomain_codeset(), dcgettext(), dcgettext_l(), dcngettext(), dcngettext_l(),
dgettext(), dgettext_l(), dngettext(), dngettext_l(), gettext(), gettext_l(), ngettext(), ngettext_l(),
textdomain()

