
TODO
Check for overlaps with Mantis bugs: 374 and 1218 (once resolved; NB 374 may also affect
aligned_alloc()), and any that get tagged tc3 or issue8 after 2020-10-29

Introduction
This document details the changes needed to align POSIX.1/SUS with ISO C 9899:2018 (C17) in
Issue 8. It covers technical changes only; it does not cover simple editorial changes that the editor
can be expected to handle as a matter of course (such as updating normative references). It is
entirely possible that C2x will be approved before Issue 8, in which case a further set of changes to
align with C2x will need to be identified during work on the Issue 8 drafts.

Note that the removal of gets() is not included here, as it is has already been removed by bug 1330.

All page and line numbers refer to the SUSv4 2018 edition (C181.pdf).

Global Change
Change all occurrences of “c99” to “c17”, except in CHANGE HISTORY sections and on XRAT
page 3556 line 120684 section A.12.2 Utility Syntax Guidelines.

Note to the editors: use a troff string for c17, e.g. *(cy or *(cY, so that it can be easily changed
again if necessary.

Changes to XBD
Ref G.1 para 1
On page 9 line 249 section 1.7.1 Codes, add a new code:

[MXC]IEC 60559 Complex Floating-Point[/MXC]
The functionality described is optional. The functionality described is mandated by the ISO
C standard only for implementations that define __STDC_IEC_559_COMPLEX__.

Ref (none)
On page 29 line 1063, 1067 section 2.2.1 Strictly Conforming POSIX Application, change:

the ISO/IEC 9899: 1999 standard

to:

the ISO C standard

Ref 6.2.8
On page 34 line 1184 section 3.11 Alignment, change:

See also the ISO C standard, Section B3.

to:

1

2
3

4

5
6
7
8
9

10

11

12

13
14

15
16

17

18
19

20
21
22

23
24

25

26

27

28
29

30

31

See also the ISO C standard, Section 6.2.8.

Ref 5.1.2.4
On page 38 line 1261 section 3 Definitions, add a new subsection:

3.31 Atomic Operation

An operation that cannot be broken up into smaller parts that could be performed separately.
An atomic operation is guaranteed to complete either fully or not at all. In the context of the
functionality provided by the <stdatomic.h> header, there are different types of atomic
operation that are defined in detail in [xref to XSH 4.12.1].

Ref 7.26.3
On page 50 line 1581 section 3.107 Condition Variable, add a new paragraph:

There are two types of condition variable: those of type pthread_cond_t which are
initialized using pthread_cond_init() and those of type cnd_t which are initialized using
cnd_init(). If an application attempts to use the two types interchangeably (that is, pass a
condition variable of type pthread_cond_t to a function that takes a cnd_t, or vice versa),
the behavior is undefined.

Note: The pthread_cond_init() and cnd_init() functions are defined in detail in the System
Interfaces volume of POSIX.1-20xx.

Ref 5.1.2.4
On page 53 line 1635 section 3 Definitions, add a new subsection:

3.125 Data Race

A situation in which there are two conflicting actions in different threads, at least one of
which is not atomic, and neither “happens before” the other, where the “happens before”
relation is defined formally in [xref to XSH 4.12.1.1].

Ref 5.1.2.4
On page 67 line 1973 section 3 Definitions, add a new subsection:

3.215 Lock-Free Operation

An operation that does not require the use of a lock such as a mutex in order to avoid data
races.

Ref 7.26.5.1
On page 70 line 2048 section 3.233 Multi-Threaded Program, change:

the process can create additional threads using pthread_create() or SIGEV_THREAD
notifications.

to:

the process can create additional threads using pthread_create(), thrd_create(), or
SIGEV_THREAD notifications.

32

33
34

35

36
37
38
39

40
41

42
43
44
45
46

47
48

49
50

51

52
53
54

55
56

57

58
59

60
61

62
63

64

65
66

Ref 7.26.4
On page 70 line 2054 section 3.234 Mutex, add a new paragraph:

There are two types of mutex: those of type pthread_mutex_t which are initialized using
pthread_mutex_init() and those of type mtx_t which are initialized using mtx_init(). If an
application attempts to use the two types interchangeably (that is, pass a mutex of type
pthread_mutex_t to a function that takes a mtx_t, or vice versa), the behavior is undefined.

Note: The pthread_mutex_init() and mtx_init() functions are defined in detail in the System
Interfaces volume of POSIX.1-20xx.

Ref 7.26.5.5
On page 82 line 2345 section 3.303 Process Termination, change:

or when the last thread in the process terminates by returning from its start function, by
calling the pthread_exit() function, or through cancellation.

to:

or when the last thread in the process terminates by returning from its start function, by
calling the pthread_exit() or thrd_exit() function, or through cancellation.

Ref 7.26.5.1
On page 90 line 2530 section 3.354 Single-Threaded Program, change:

if the process attempts to create additional threads using pthread_create() or
SIGEV_THREAD notifications

to:

if the process attempts to create additional threads using pthread_create(), thrd_create(), or
SIGEV_THREAD notifications

Ref 5.1.2.4
On page 95 line 2639 section 3 Definition, add a new subsection:

3.382 Synchronization Operation

An operation that synchronizes memory. See [xref to XSH 4.12].

Ref 7.26.5.1
On page 99 line 2745 section 3.405 Thread ID, change:

Each thread in a process is uniquely identified during its lifetime by a value of type
pthread_t called a thread ID.

to:

A value that uniquely identifies each thread in a process during the thread's lifetime. The
value shall be unique across all threads in a process, regardless of whether the thread is:

• The initial thread.

67
68

69
70
71
72

73
74

75
76

77
78

79

80
81

82
83

84
85

86

87
88

89
90

91

92

93
94

95
96

97

98
99

100

• A thread created using pthread_create().
• A thread created using thrd_create().
• A thread created via a SIGEV_THREAD notification.

Note: Since pthread_create() returns an ID of type pthread_t and thrd_create() returns an ID of
type thrd_t, this uniqueness requirement necessitates that these two types are defined as the
same underlying type because calls to pthread_self() and thrd_current() from the initial
thread need to return the same thread ID. The pthread_create(), pthread_self(), thrd_create()
and thrd_current() functions and SIGEV_THREAD notifications are defined in detail in the
System Interfaces volume of POSIX.1-20xx.

Ref 5.1.2.4
On page 99 line 2752 section 3.407 Thread-Safe, change:

A thread-safe function can be safely invoked concurrently with other calls to the same
function, or with calls to any other thread-safe functions, by multiple threads.

to:

A thread-safe function shall avoid data races with other calls to the same function, and with
calls to any other thread-safe functions, by multiple threads.

Ref 5.1.2.4
On page 99 line 2756 section 3.407 Thread-Safe, add a new paragraph:

A function that is not required to be thread-safe need not avoid data races with other calls to
the same function, nor with calls to any other function (including thread-safe functions), by
multiple threads, unless explicitly stated otherwise.

Ref 7.26.6
On page 99 line 2758 section 3.408 Thread-Specific Data Key, change:

A process global handle of type pthread_key_t which is used for naming thread-specific
data.

Although the same key value may be used by different threads, the values bound to the key
by pthread_setspecific() and accessed by pthread_getspecific() are maintained on a per-
thread basis and persist for the life of the calling thread.

Note: The pthread_getspecific() and pthread_setspecific() functions are defined in detail in the
System Interfaces volume of POSIX.1-2017.

to:

A process global handle which is used for naming thread-specific data. There are two types
of key: those of type pthread_key_t which are created using pthread_key_create() and
those of type tss_t which are created using tss_create(). If an application attempts to use the
two types of key interchangeably (that is, pass a key of type pthread_key_t to a function
that takes a tss_t, or vice versa), the behavior is undefined.

Although the same key value can be used by different threads, the values bound to the key
by pthread_setspecific() for keys of type pthread_key_t, and by tss_set() for keys of type
tss_t, are maintained on a per-thread basis and persist for the life of the calling thread.

101
102
103

104
105
106
107
108
109

110
111

112
113

114

115
116

117
118

119
120
121

122
123

124
125

126
127
128

129
130

131

132
133
134
135
136

137
138
139

Note: The pthread_key_create(), pthread_setspecific(), tss_create() and tss_set() functions are
defined in detail in the System Interfaces volume of POSIX.1-20xx.

Ref 5.1.2.4, 7.17.3
On page 111 line 3060 section 4.12 Memory Synchronization, change:

4.12 Memory Synchronization
Applications shall ensure that access to any memory location by more than one thread of
control (threads or processes) is restricted such that no thread of control can read or modify
a memory location while another thread of control may be modifying it. Such access is
restricted using functions that synchronize thread execution and also synchronize memory
with respect to other threads. The following functions synchronize memory with respect to
other threads:

to:

4.12 Memory Ordering and Synchronization

4.12.1 Memory Ordering

4.12.1.1 Data Races

The value of an object visible to a thread T at a particular point is the initial value of the
object, a value stored in the object by T, or a value stored in the object by another thread,
according to the rules below.

Two expression evaluations conflict if one of them modifies a memory location and the other
one reads or modifies the same memory location.

This standard defines a number of atomic operations (see <stdatomic.h>) and operations on
mutexes (see <threads.h>) that are specially identified as synchronization operations. These
operations play a special role in making assignments in one thread visible to another. A
synchronization operation on one or more memory locations is either an acquire operation, a
release operation, both an acquire and release operation, or a consume operation. A
synchronization operation without an associated memory location is a fence and
can be either an acquire fence, a release fence, or both an acquire and release fence. In
addition, there are relaxed atomic operations, which are not synchronization operations, and
atomic read-modify-write operations, which have special characteristics.

Note: For example, a call that acquires a mutex will perform an acquire operation on the locations
composing the mutex. Correspondingly, a call that releases the same mutex will perform a
release operation on those same locations. Informally, performing a release operation on A
forces prior side effects on other memory locations to become visible to other threads that
later perform an acquire or consume operation on A. Relaxed atomic operations are not
included as synchronization operations although, like synchronization operations, they
cannot contribute to data races.

All modifications to a particular atomic object M occur in some particular total order, called
the modification order of M. If A and B are modifications of an atomic object M, and A
happens before B, then A shall precede B in the modification order of M, which is defined
below.

140
141

142
143

144
145
146
147
148
149
150

151

152

153

154

155
156
157

158
159

160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175

176
177
178
179

Note: This states that the modification orders must respect the “happens before” relation.

Note: There is a separate order for each atomic object. There is no requirement that these can be
combined into a single total order for all objects. In general this will be impossible since
different threads may observe modifications to different variables in inconsistent orders.

A release sequence headed by a release operation A on an atomic object M is a maximal
contiguous sub-sequence of side effects in the modification order of M, where the first
operation is A and every subsequent operation either is performed by the same thread that
performed the release or is an atomic read-modify-write operation.

Certain system interfaces synchronize with other system interfaces performed by another
thread. In particular, an atomic operation A that performs a release operation on an object M
shall synchronize with an atomic operation B that performs an acquire operation on M and
reads a value written by any side effect in the release sequence headed by A.

Note: Except in the specified cases, reading a later value does not necessarily ensure visibility as
described below. Such a requirement would sometimes interfere with efficient
implementation.

Note: The specifications of the synchronization operations define when one reads the value written
by another. For atomic variables, the definition is clear. All operations on a given mutex
occur in a single total order. Each mutex acquisition “reads the value written” by the last
mutex release.

An evaluation A carries a dependency to an evaluation B if:

• the value of A is used as an operand of B, unless:
 — B is an invocation of the kill_dependency() macro,
 — A is the left operand of a && or || operator,
 — A is the left operand of a ?: operator, or
 — A is the left operand of a , (comma) operator; or

• A writes a scalar object or bit-field M, B reads from M the value written by A, and A
is sequenced before B, or

• for some evaluation X, A carries a dependency to X and X carries a dependency to B.

An evaluation A is dependency-ordered before an evaluation B if:

• A performs a release operation on an atomic object M, and, in another thread, B
performs a consume operation on M and reads a value written by any side effect in
the release sequence headed by A, or

• for some evaluation X, A is dependency-ordered before X and X carries a dependency
to B.

An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X:

• A synchronizes with X and X is sequenced before B,
• A is sequenced before X and X inter-thread happens before B, or
• A inter-thread happens before X and X inter-thread happens before B.

Note: The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced
before”, “synchronizes with”, and “dependency-ordered before” relationships, with two

180

181
182
183

184
185
186
187

188
189
190
191

192
193
194

195
196
197
198

199

200
201
202
203
204
205
206
207

208

209
210
211
212
213

214
215

216
217
218

219
220

exceptions. The first exception is that a concatenation is not permitted to end with
“dependency-ordered before” followed by “sequenced before”. The reason for this limitation
is that a consume operation participating in a “dependency-ordered before” relationship
provides ordering only with respect to operations to which this consume operation actually
carries a dependency. The reason that this limitation applies only to the end of such a
concatenation is that any subsequent release operation will provide the required ordering for
a prior consume operation. The second exception is that a concatenation is not permitted to
consist entirely of “sequenced before”. The reasons for this limitation are (1) to permit
“inter-thread happens before” to be transitively closed and (2) the “happens before” relation,
defined below, provides for relationships consisting entirely of “sequenced before”.

An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread
happens before B. The implementation shall ensure that a cycle in the “happens before”
relation never occurs.

Note: This cycle would otherwise be possible only through the use of consume operations.

A visible side effect A on an object M with respect to a value computation B of M satisfies
the conditions:

• A happens before B, and
• there is no other side effect X to M such that A happens before X and X happens

before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value
stored by the visible side effect A.

Note: If there is ambiguity about which side effect to a non-atomic object is visible, then there is a
data race and the behavior is undefined.

Note: This states that operations on ordinary variables are not visibly reordered. This is not actually

detectable without data races, but it is necessary to ensure that data races, as defined here,
and with suitable restrictions on the use of atomics, correspond to data races in a simple
interleaved (sequentially consistent) execution.

The value of an atomic object M, as determined by evaluation B, shall be the value stored by
some side effect A that modifies M, where B does not happen before A.

Note: The set of side effects from which a given evaluation might take its value is also restricted by
the rest of the rules described here, and in particular, by the coherence requirements below.

If an operation A that modifies an atomic object M happens before an operation B that
modifies M, then A shall be earlier than B in the modification order of M. (This is known as
“write-write coherence”.)

If a value computation A of an atomic object M happens before a value computation B of M,
and A takes its value from a side effect X on M, then the value computed by B shall either be
the value stored by X or the value stored by a side effect Y on M, where Y follows X in the
modification order of M. (This is known as “read-read coherence”.)

If a value computation A of an atomic object M happens before an operation B on M, then A
shall take its value from a side effect X on M, where X precedes B in the modification order
of M. (This is known as “read-write coherence”.)

221
222
223
224
225
226
227
228
229
230

231
232
233

234

235
236

237
238
239

240
241

242
243
244
245
246
247
248
249
250
251

252
253

254
255
256

257
258
259
260

261
262
263

If a side effect X on an atomic object M happens before a value computation B of M, then the
evaluation B shall take its value from X or from a side effect Y that follows X in the
modification order of M. (This is known as “write-read coherence”.)

Note: This effectively disallows implementation reordering of atomic operations to a single object,
even if both operations are “relaxed” loads. By doing so, it effectively makes the “cache
coherence” guarantee provided by most hardware available to POSIX atomic operations.

Note: The value observed by a load of an atomic object depends on the “happens before” relation,
which in turn depends on the values observed by loads of atomic objects. The intended
reading is that there must exist an association of atomic loads with modifications they
observe that, together with suitably chosen modification orders and the “happens before”
relation derived as described above, satisfy the resulting constraints as imposed here.

An application contains a data race if it contains two conflicting actions in different threads,
at least one of which is not atomic, and neither happens before the other. Any such data
race results in undefined behavior.

4.12.1.2 Memory Order and Consistency

The enumerated type memory_order, defined in <stdatomic.h> (if supported), specifies
the detailed regular (non-atomic) memory synchronization operations as defined in [xref to
4.12.1.1] and may provide for operation ordering. Its enumeration constants specify memory
order as follows:

For memory_order_relaxed, no operation orders memory.

For memory_order_release, memory_order_acq_rel, and
memory_order_seq_cst, a store operation performs a release operation on the affected
memory location.

For memory_order_acquire, memory_order_acq_rel, and
memory_order_seq_cst, a load operation performs an acquire operation on the affected
memory location.

For memory_order_consume, a load operation performs a consume operation on the
affected memory location.

There shall be a single total order S on all memory_order_seq_cst operations, consistent
with the “happens before” order and modification orders for all affected locations, such that
each memory_order_seq_cst operation B that loads a value from an atomic object M
observes one of the following values:

• the result of the last modification A of M that precedes B in S, if it exists, or
• if A exists, the result of some modification of M that is not

memory_order_seq_cst and that does not happen before A, or
• if A does not exist, the result of some modification of M that is not

memory_order_seq_cst.

Note: Although it is not explicitly required that S include lock operations, it can always be
extended to an order that does include lock and unlock operations, since the ordering
between those is already included in the “happens before” ordering.

264
265
266

267
268
269

270
271
272
273
274

275
276
277

278

279
280
281
282

283

284
285
286

287
288
289

290
291

292
293
294
295

296
297
298
299
300

301
302
303

Note: Atomic operations specifying memory_order_relaxed are relaxed only with respect to
memory ordering. Implementations must still guarantee that any given atomic access to a
particular atomic object be indivisible with respect to all other atomic accesses to that object.

For an atomic operation B that reads the value of an atomic object M, if there is a
memory_order_seq_cst fence X sequenced before B, then B observes either the last
memory_order_seq_cst modification of M preceding X in the total order S or a later
modification of M in its modification order.

For atomic operations A and B on an atomic object M, where A modifies M and B takes its
value, if there is a memory_order_seq_cst fence X such that A is sequenced before X and
B follows X in S, then B observes either the effects of A or a later modification of M in its
modification order.

For atomic modifications A and B of an atomic object M, B occurs later than A in the
modification order of M if:

• there is a memory_order_seq_cst fence X such that A is sequenced before X, and
X precedes B in S, or

• there is a memory_order_seq_cst fence Y such that Y is sequenced before B, and
A precedes Y in S, or

• there are memory_order_seq_cst fences X and Y such that A is sequenced before
X, Y is sequenced before B, and X precedes Y in S.

Atomic read-modify-write operations shall always read the last value (in the modification
order) stored before the write associated with the read-modify-write operation.

An atomic store shall only store a value that has been computed from constants and input
values by a finite sequence of evaluations, such that each evaluation observes the values of
variables as computed by the last prior assignment in the sequence. The ordering of
evaluations in this sequence shall be such that:

• If an evaluation B observes a value computed by A in a different thread, then B does
not happen before A.

• If an evaluation A is included in the sequence, then all evaluations that assign to the
same variable and happen before A are also included.

Note: The second requirement disallows “out-of-thin-air”, or “speculative” stores of atomics when
relaxed atomics are used. Since unordered operations are involved, evaluations can appear in
this sequence out of thread order.

4.12.2 Memory Synchronization

In order to avoid data races, applications shall ensure that non-lock-free access to any
memory location by more than one thread of control (threads or processes) is restricted such
that no thread of control can read or modify a memory location while another thread of
control may be modifying it. Such access can be restricted using functions that synchronize
thread execution and also synchronize memory with respect to other threads. The following
functions shall synchronize memory with respect to other threads:

Ref 7.26.3, 7.26.4
On page 111 line 3066-3075 section 4.12 Memory Synchronization, add the following to the list of
functions that synchronize memory:

304
305
306

307
308
309
310

311
312
313
314

315
316

317
318
319
320
321
322

323
324

325
326
327
328

329
330
331
332

333
334
335

336

337
338
339
340
341
342

343
344
345

cnd_broadcast() mtx_lock() thrd_create()
cnd_signal() mtx_timedlock() thrd_join()
cnd_timedwait() mtx_trylock()
cnd_wait() mtx_unlock()

Ref 7.26.2.1, 7.26.4
On page 111 line 3076 section 4.12 Memory Synchronization, change:

The pthread_once() function shall synchronize memory for the first call in each thread for a
given pthread_once_t object. If the init_routine called by pthread_once() is a cancellation
point and is canceled, a call to pthread_once() for the same pthread_once_t object made
from a cancellation cleanup handler shall also synchronize memory.

The pthread_mutex_lock() function need not synchronize memory if the mutex type if
PTHREAD_MUTEX_RECURSIVE and the calling thread already owns the mutex. The
pthread_mutex_unlock() function need not synchronize memory if the mutex type is
PTHREAD_MUTEX_RECURSIVE and the mutex has a lock count greater than one.

to:

The pthread_once() and call_once() functions shall synchronize memory for the first call in
each thread for a given pthread_once_t or once_flag object, respectively. If the init_routine
called by pthread_once() or call_once() is a cancellation point and is canceled, a call to
pthread_once() for the same pthread_once_t object, or to call_once() for the same
once_flag object, made from a cancellation cleanup handler shall also synchronize memory.

The pthread_mutex_lock() and thrd_lock() functions, and their related “timed” and “try”
variants, need not synchronize memory if the mutex is a recursive mutex and the calling
thread already owns the mutex. The pthread_mutex_unlock() and thrd_unlock() functions
need not synchronize memory if the mutex is a recursive mutex and has a lock count greater
than one.

Ref 7.12.1 para 7
On page 117 line 3319 section 4.20 Treatment of Error Conditions for Mathematical Functions,
change:

The following error conditions are defined for all functions in the <math.h> header.

to:

The error conditions defined for all functions in the <math.h> header are domain, pole and
range errors, described below. If a domain, pole, or range error occurs and the integer
expression (math_errhandling & MATH_ERRNO) is zero, then errno shall either be set to
the value corresponding to the error, as specified below, or be left unmodified. If no such
error occurs, errno shall be left unmodified regardless of the setting of math_errhandling.

Ref 7.12.1 para 3
On page 117 line 3330 section 4.20.2 Pole Error, change:

A ``pole error’’ occurs if the mathematical result of the function is an exact infinity (for
example, log(0.0)).

346
347
348
349

350
351

352
353
354
355

356
357
358
359

360

361
362
363
364
365

366
367
368
369
370

371
372
373

374

375

376
377
378
379
380

381
382

383
384

to:

A ``pole error’’ shall occur if the mathematical result of the function has an exact infinite
result as the finite input argument(s) are approached in the limit (for example, log(0.0)). The
description of each function lists any required pole errors; an implementation may define
additional pole errors, provided that such errors are consistent with the mathematical
definition of the function.

Ref 7.12.1 para 4
On page 118 line 3339 section 4.20.3 Range Error, after:

A ``range error’’ shall occur if the finite mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude.

add:

The description of each function lists any required range errors; an implementation may
define additional range errors, provided that such errors are consistent with the mathematical
definition of the function and are the result of either overflow or underflow.

Ref 7.29.1 para 5
On page 129 line 3749 section 6.3 C Language Wide-Character Codes, add a new paragraph:

Arguments to the functions declared in the <wchar.h> header can point to arrays containing
wchar_t values that do not correspond to valid wide character codes according to the
LC_CTYPE category of the locale being used. Such values shall be processed according to
the specified semantics for the function in the System Interfaces volume of POSIX.1-20xx,
except that it is unspecified whether an encoding error occurs if such a value appears in the
format string of a function that has a format string as a parameter and the specified
semantics do not require that value to be processed as if by wcrtomb().

Ref 7.3.1 para 2
On page 224 line 7541 section <complex.h>, add a new paragraph:

[CX] Implementations shall not define the macro __STDC_NO_COMPLEX__, except for
profile implementations that define _POSIX_SUBPROFILE (see [xref to 2.1.5.1
Subprofiling Considerations]) in <unistd.h>, which may define
__STDC_NO_COMPLEX__ and, if they do so, need not provide this header nor support
any of its facilities.[/CX]

Ref G.6 para 1
On page 224 line 7551 section <complex.h>, after:

The macros imaginary and _Imaginary_I shall be defined if and only if the implementation
supports imaginary types.

add:

[MXC]Implementations that support the IEC 60559 Complex Floating-Point option shall
define the macros imaginary and _Imaginary_I, and the macro I shall expand to
_Imaginary_I.[/MXC]

385

386
387
388
389
390

391
392

393
394

395

396
397
398

399
400

401
402
403
404
405
406
407

408
409

410
411
412
413
414

415
416

417
418

419

420
421
422

Ref 7.3.9.3
On page 224 line 7553 section <complex.h>, add:

The following shall be defined as macros.

double complex CMPLX(double x, double y);
float complex CMPLXF(float x, float y);
long double complex CMPLXL(long double x, long double y);

Ref 7.3.1 para 2
On page 226 line 7623 section <complex.h>, add a new first paragraph to APPLICATION USAGE:

The <complex.h> header is optional in the ISO C standard but is mandated by POSIX.1-
20xx. Note however that subprofiles can choose to make this header optional (see [xref to
2.1.5.1 Subprofiling Considerations]), and therefore application portability to subprofile
implementations would benefit from checking whether __STDC_NO_COMPLEX__ is
defined before inclusion of <complex.h>.

Ref 7.3.9.3
On page 226 line 7649 section <complex.h>, add CMPLX() to the SEE ALSO list before cabs().

Ref 7.5 para 2
On page 234 line 7876 section <errno.h>, change:

The <errno.h> header shall provide a declaration or definition for errno. The symbol errno
shall expand to a modifiable lvalue of type int. It is unspecified whether errno is a macro or
an identifier declared with external linkage.

to:
The <errno.h> header shall provide a definition for the macro errno, which shall expand to
a modifiable lvalue of type int and thread local storage duration.

Ref (none)
On page 245 line 8290 section <fenv.h>, change:

the ISO/IEC 9899: 1999 standard

to:

the ISO C standard

Ref 5.2.4.2.2 para 11
On page 248 line 8369 section <float.h>, add the following new paragraphs:

The presence or absence of subnormal numbers is characterized by the implementation-
defined values of FLT_HAS_SUBNORM , DBL_HAS_SUBNORM , and
LDBL_HAS_SUBNORM :

−1 indeterminable

0 absent (type does not support subnormal numbers)

423
424

425

426
427
428

429
430

431
432
433
434
435

436
437

438
439

440
441
442

443
444
445

446
447

448

449

450

451
452

453
454
455

1 present (type does support subnormal numbers)

Note: Characterization as indeterminable is intended if floating-point operations do not consistently
interpret subnormal representations as zero, nor as non-zero. Characterization as absent is
intended if no floating-point operations produce subnormal results from non-subnormal
inputs, even if the type format includes representations of subnormal numbers.

Ref 5.2.4.2.2 para 12
On page 248 line 8378 section <float.h>, add a new bullet item:

Number of decimal digits, n, such that any floating-point number with p radix b digits can
be rounded to a floating-point number with n decimal digits and back again without change
to the value.

[math stuff]

FLT_DECIMAL_DIG 6

DBL_DECIMAL_DIG 10

LDBL_DECIMAL_DIG 10

where [math stuff] is a copy of the math stuff that follows line 8381, with the “max” suffixes
removed.

Ref 5.2.4.2.2 para 14
On page 250 line 8429 section <float.h>, add a new bullet item:

Minimum positive floating-point number.

FLT_TRUE_MIN 1E-37

DBL_TRUE_MIN 1E-37

LDBL_TRUE_MIN 1E-37

Note: If the presence or absence of subnormal numbers is indeterminable, then the value is
intended to be a positive number no greater than the minimum normalized positive number
for the type.

Ref (none)
On page 270 line 8981 section <limits.h>, change:

the ISO/IEC 9899: 1999 standard

to:

the ISO C standard

Ref 7.22.4.3
On page 271 line 9030 section <limits.h>, change:

456
457
458
459

460
461

462
463
464

465

466

467

468

469
470

471
472

473

474

475

476

477
478
479

480
481

482

483

484

485
486

Maximum number of functions that may be registered with atexit().

to:

Maximum number of functions that can be registered with atexit() or at_quick_exit(). The
limit shall apply independently to each function.

Ref 5.2.4.2.1 para 2
On page 280 line 9419 section <limits.h>, change:

If the value of an object of type char is treated as a signed integer when used in an
expression, the value of {CHAR_MIN} is the same as that of {SCHAR_MIN} and the value
of {CHAR_MAX} is the same as that of {SCHAR_MAX}. Otherwise, the value of
{CHAR_MIN} is 0 and the value of {CHAR_MAX} is the same as that of
{UCHAR_MAX}.

to:

If an object of type char can hold negative values, the value of {CHAR_MIN} shall be the
same as that of {SCHAR_MIN} and the value of {CHAR_MAX} shall be the same as that
of {SCHAR_MAX}. Otherwise, the value of {CHAR_MIN} shall be 0 and the value of
{CHAR_MAX} shall be the same as that of {UCHAR_MAX}.

Ref (none)
On page 294 line 10016 section <math.h>, change:

the ISO/IEC 9899: 1999 standard provides for …

to:

the ISO/IEC 9899: 1999 standard provided for …

Ref 7.26.5.5
On page 317 line 10742 section <pthread.h>, change:

void pthread_exit(void *);

to:

_Noreturn void pthread_exit(void *);

Ref 7.13.2.1 para 1
On page 331 line 11204 section <setjmp.h>, change:

void longjmp(jmp_buf, int);
[CX] void siglongjmp(sigjmp_buf, int);[/CX]

to:

_Noreturn void longjmp(jmp_buf, int);
[CX] _Noreturn void siglongjmp(sigjmp_buf, int);[/CX]

Ref 7.15

487

488

489
490

491
492

493
494
495
496
497

498

499
500
501
502

503
504

505

506

507

508
509

510

511

512

513
514

515
516

517

518
519

520

On page 343 line 11647 insert a new <stdalign.h> section:

NAME
stdalign.h — alignment macros

SYNOPSIS
#include <stdalign.h>

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The <stdalign.h> header shall define the following macros:

alignas Expands to _Alignas

alignof Expands to _Alignof

__alignas_is_defined
Expands to the integer constant 1

__alignof_is_defined
Expands to the integer constant 1

The __alignas_is_defined and __alignof_is_defined macros shall be suitable for use in #if
preprocessing directives.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.17, 7.31.8 para 2
On page 345 line 11733 insert a new <stdatomic.h> section:

NAME
stdatomic.h — atomics

SYNOPSIS
#include <stdatomic.h>

521

522
523

524
525

526
527
528
529

530

531

532

533
534

535
536

537
538

539
540

541
542

543
544

545
546

547
548

549
550

551
552

553
554

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide this
header nor support any of its facilities.

The <stdatomic.h> header shall define the atomic_flag type as a structure type. This type
provides the classic test-and-set functionality. It shall have two states, set and clear.
Operations on an object of type atomic_flag shall be lock free.

The <stdatomic.h> header shall define each of the atomic integer types in the following
table as a type that has the same representation and alignment requirements as the
corresponding direct type.

Note: The same representation and alignment requirements are meant to imply interchangeability
as arguments to functions, return values from functions, and members of unions.

Atomic type name Direct type

atomic_bool
atomic_char
atomic_schar
atomic_uchar
atomic_short
atomic_ushort
atomic_int
atomic_uint
atomic_long
atomic_ulong
atomic_llong
atomic_ullong
atomic_char16_t
atomic_char32_t
atomic_wchar_t
atomic_int_least8_t
atomic_uint_least8_t
atomic_int_least16_t
atomic_uint_least16_t
atomic_int_least32_t
atomic_uint_least32_t
atomic_int_least64_t
atomic_uint_least64_t
atomic_int_fast8_t
atomic_uint_fast8_t
atomic_int_fast16_t
atomic_uint_fast16_t
atomic_int_fast32_t
atomic_uint_fast32_t
atomic_int_fast64_t
atomic_uint_fast64_t
atomic_intptr_t

_Atomic _Bool
_Atomic char
_Atomic signed char
_Atomic unsigned char
_Atomic short
_Atomic unsigned short
_Atomic int
_Atomic unsigned int
_Atomic long
_Atomic unsigned long
_Atomic long long
_Atomic unsigned long long
_Atomic char16_t
_Atomic char32_t
_Atomic wchar_t
_Atomic int_least8_t
_Atomic uint_least8_t
_Atomic int_least16_t
_Atomic uint_least16_t
_Atomic int_least32_t
_Atomic uint_least32_t
_Atomic int_least64_t
_Atomic uint_least64_t
_Atomic int_fast8_t
_Atomic uint_fast8_t
_Atomic int_fast16_t
_Atomic uint_fast16_t
_Atomic int_fast32_t
_Atomic uint_fast32_t
_Atomic int_fast64_t
_Atomic uint_fast64_t
_Atomic intptr_t

555
556
557
558

559
560

561
562
563

564
565
566

567
568

atomic_uintptr_t
atomic_size_t
atomic_ptrdiff_t
atomic_intmax_t
atomic_uintmax_t

_Atomic uintptr_t
_Atomic size_t
_Atomic ptrdiff_t
_Atomic intmax_t
_Atomic uintmax_t

The <stdatomic.h> header shall define the memory_order type as an enumerated type
whose enumerators shall include at least the following:

memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acq_rel
memory_order_seq_cst

The <stdatomic.h> header shall define the following atomic lock-free macros:

ATOMIC_BOOL_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
ATOMIC_CHAR16_T_LOCK_FREE
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_WCHAR_T_LOCK_FREE
ATOMIC_SHORT_LOCK_FREE
ATOMIC_INT_LOCK_FREE
ATOMIC_LONG_LOCK_FREE
ATOMIC_LLONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE

which shall expand to constant expressions suitable for use in #if preprocessing directives
and which shall indicate the lock-free property of the corresponding atomic types (both
signed and unsigned). A value of 0 shall indicate that the type is never lock-free; a value of 1
shall indicate that the type is sometimes lock-free; a value of 2 shall indicate that the type is
always lock-free.

The <stdatomic.h> header shall define the macro ATOMIC_FLAG_INIT which shall
expand to an initializer for an object of type atomic_flag. This macro shall initialize an
atomic_flag to the clear state. An atomic_flag that is not explicitly initialized with
ATOMIC_FLAG_INIT is initially in an indeterminate state.

[OB]The <stdatomic.h> header shall define the macro ATOMIC_VAR_INIT(value) which
shall expand to a token sequence suitable for initializing an atomic object of a type that is
initialization-compatible with the non-atomic type of its value argument.[/OB] An atomic
object with automatic storage duration that is not explicitly initialized is initially in an
indeterminate state.

The <stdatomic.h> header shall define the macro kill_dependency() which shall behave as
described in [xref to XSH kill_dependency()].

The <stdatomic.h> header shall declare the following generic functions, where A refers to
an atomic type, C refers to its corresponding non-atomic type, and M is C for atomic integer
types or ptrdiff_t for atomic pointer types.

569
570

571
572
573
574
575
576

577

578
579
580
581
582
583
584
585
586
587

588
589
590
591
592

593
594
595
596

597
598
599
600
601

602
603

604
605
606

_Bool atomic_compare_exchange_strong(volatile A *, C *, C);
_Bool atomic_compare_exchange_strong_explicit(volatile A *,

C *, C, memory_order, memory_order);
_Bool atomic_compare_exchange_weak(volatile A *, C *, C);
_Bool atomic_compare_exchange_weak_explicit(volatile A *, C *,

C, memory_order, memory_order);
C atomic_exchange(volatile A *, C);
C atomic_exchange_explicit(volatile A *, C, memory_order);
C atomic_fetch_add(volatile A *, M);
C atomic_fetch_add_explicit(volatile A *, M,

memory_order);
C atomic_fetch_and(volatile A *, M);
C atomic_fetch_and_explicit(volatile A *, M,

memory_order);
C atomic_fetch_or(volatile A *, M);
C atomic_fetch_or_explicit(volatile A *, M, memory_order);
C atomic_fetch_sub(volatile A *, M);
C atomic_fetch_sub_explicit(volatile A *, M,

memory_order);
C atomic_fetch_xor(volatile A *, M);
C atomic_fetch_xor_explicit(volatile A *, M,

memory_order);
void atomic_init(volatile A *, C);
_Bool atomic_is_lock_free(const volatile A *);
C atomic_load(const volatile A *);
C atomic_load_explicit(const volatile A *, memory_order);
void atomic_store(volatile A *, C);
void atomic_store_explicit(volatile A *, C, memory_order);

It is unspecified whether any generic function declared in <stdatomic.h> is a macro or an
identifier declared with external linkage. If a macro definition is suppressed in order to
access an actual function, or a program defines an external identifier with the name of a
generic function, the behavior is undefined.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void atomic_flag_clear(volatile atomic_flag *);
void atomic_flag_clear_explicit(volatile atomic_flag *,

memory_order);
_Bool atomic_flag_test_and_set(volatile atomic_flag *);
_Bool atomic_flag_test_and_set_explicit(

volatile atomic_flag *, memory_order);
void atomic_signal_fence(memory_order);
void atomic_thread_fence(memory_order);

APPLICATION USAGE
None.

RATIONALE
Since operations on the atomic_flag type are lock free, the operations should also be
address-free. No other type requires lock-free operations, so the atomic_flag type is the
minimum hardware-implemented type needed to conform to this standard. The remaining
types can be emulated with atomic_flag, though with less than ideal properties.

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

635
636
637
638

639
640

641
642
643
644
645
646
647
648

649
650

651
652
653
654
655

The representation of atomic integer types need not have the same size as their
corresponding regular types. They should have the same size whenever possible, as it eases
effort required to port existing code.

FUTURE DIRECTIONS
The ISO C standard states that the macro ATOMIC_VAR_INIT is an obsolescent feature.
This macro may be removed in a future version of this standard.

SEE ALSO
Section 4.12.1

XSH atomic_compare_exchange_strong(), atomic_compare_exchange_weak(),
atomic_exchange(), atomic_fetch_key(), atomic_flag_clear(),atomic_flag_test_and_set(),
atomic_init(), atomic_is_lock_free(), atomic_load(), atomic_signal_fence(), atomic_store(),
atomic_thread_fence(), kill_dependency().

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.31.9
On page 345 line 11747 section <stdbool.h>, add OB shading to:

An application may undefine and then possibly redefine the macros bool, true, and false.

Ref 7.19 para 2
On page 346 line 11774 section <stddef.h>, add:

max_align_t Object type whose alignment is the greatest fundamental alignment.

Ref (none)
On page 348 line 11834 section <stdint.h>, change:

the ISO/IEC 9899: 1999 standard

to:

the ISO C standard

Ref 7.20.1.1 para 1
On page 348 line 11841 section <stdint.h>, change:

denotes a signed integer type

to:

denotes such a signed integer type

Ref 7.20.1.1 para 2
On page 348 line 11843 section <stdint.h>, change:

… designates an unsigned integer type with width N. Thus, uint24_t denotes an unsigned

656
657
658

659
660
661

662
663

664
665
666
667

668
669

670
671

672

673
674

675

676
677

678

679

680

681
682

683

684

685

686
687

688

integer type …

to:

… designates an unsigned integer type with width N and no padding bits. Thus, uint24_t
denotes such an unsigned integer type …

Ref 7.21.1 para 2
On page 355 line 12064 section <stdio.h>, change:

A non-array type containing all information needed to specify uniquely every position
within a file.

to:

A complete object type, other than an array type, capable of recording all the information
needed to specify uniquely every position within a file.

Ref 7.21.1 para 3
On page 357 line 12186 section <stdio.h>, change RATIONALE from:

There is a conflict between the ISO C standard and the POSIX definition of the
{TMP_MAX} macro that is addressed by ISO/IEC 9899: 1999 standard, Defect Report 336.
The POSIX standard is in alignment with the public record of the response to the Defect
Report. This change has not yet been published as part of the ISO C standard.

to:

None.

Ref 7.22.4.5 para 1
On page 359 line 12267 section <stdlib.h>, change:

void _Exit(int);

to:

_Noreturn void _Exit(int);

Ref 7.22.4.1 para 1
On page 359 line 12269 section <stdlib.h>, change:

void abort(void);

to:

_Noreturn void abort(void);

Ref 7.22.3.1, 7.22.4.3
On page 359 line 12270 section <stdlib.h>, add:

void *aligned_alloc(size_t, size_t);
int at_quick_exit(void (*)(void));

689

690

691
692

693
694

695
696

697

698
699

700
701

702
703
704
705

706

707

708
709

710

711

712

713
714

715

716

717

718
719

720
721

Ref 7.22.4.4 para 1
On page 360 line 12282 section <stdlib.h>, change:

void exit(int);

to:

_Noreturn void exit(int);

Ref 7.22.4.7
On page 360 line 12309 section <stdlib.h>, add:

_Noreturn void quick_exit(int);

Ref 7.23
On page 363 line 12380 insert a new <stdnoreturn.h> section:

NAME
stdnoreturn.h — noreturn macro

SYNOPSIS
#include <stdnoreturn.h>

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The <stdnoreturn.h> header shall define the macro noreturn which shall expand to
_Noreturn.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref G.7
On page 422 line 14340 section <tgmath.h>, add two new paragraphs:

[MXC]Type-generic macros that accept complex arguments shall also accept imaginary
arguments. If an argument is imaginary, the macro shall expand to an expression whose type
is real, imaginary, or complex, as appropriate for the particular function: if the argument is

722
723

724

725

726

727
728

729

730
731

732
733

734
735

736
737
738
739

740
741

742
743

744
745

746
747

748
749

750
751

752
753

754
755
756

imaginary, then the types of cos(), cosh(), fabs(), carg(), cimag(), and creal() shall be real;
the types of sin(), tan(), sinh(), tanh(), asin(), atan(), asinh(), and atanh() shall be imaginary;
and the types of the others shall be complex.

Given an imaginary argument, each of the type-generic macros cos(), sin(), tan(), cosh(),
sinh(), tanh(), asin(), atan(), asinh(), atanh() is specified by a formula in terms of real
functions:

cos(iy) = cosh(y)
sin(iy) = i sinh(y)
tan(iy) = i tanh(y)
cosh(iy) = cos(y)
sinh(iy) = i sin(y)
tanh(iy) = i tan(y)
asin(iy) = i asinh(y)
atan(iy) = i atanh(y)
asinh(iy) = i asin(y)
atanh(iy) = i atan(y)
[/MXC]

Ref (none)
On page 423 line 14404 section <tgmath.h>, change:

the ISO/IEC 9899: 1999 standard

to:

the ISO C standard

Ref 7.26
On page 424 line 14425 insert a new <threads.h> section:

NAME
threads.h — ISO C threads

SYNOPSIS
#include <threads.h>

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

[CX] Implementations shall not define the macro __STDC_NO_THREADS__, except for
profile implementations that define _POSIX_SUBPROFILE (see [xref to 2.1.5.1
Subprofiling Considerations]) in <unistd.h>, which may define __STDC_NO_THREADS__
and, if they do so, need not provide this header nor support any of its facilities.[/CX]

The <threads.h> header shall define the following macros:

thread_local Expands to _Thread_local.

757
758
759

760
761
762

763
764
765
766
767
768
769
770
771
772
773

774
775

776

777

778

779
780

781
782

783
784

785
786
787
788

789
790
791
792

793

794

ONCE_FLAG_INIT Expands to a value that can be used to initialize an object of
type once_flag.

TSS_DTOR_ITERATIONS Expands to an integer constant expression representing the
maximum number of times that destructors will be called
when a thread terminates and shall be suitable for use in #if
preprocessing directives.

[CX]If {PTHREAD_DESTRUCTOR_ITERATIONS} is defined in <limits.h>, the value of
TSS_DTOR_ITERATIONS shall be equal to
{PTHREAD_DESTRUCTOR_ITERATIONS}; otherwise, the value of
TSS_DTOR_ITERATIONS shall be greater than or equal to the value of
{_POSIX_THREAD_DESTRUCTOR_ITERATIONS} and shall be less than or equal to the
maximum positive value that can be returned by a call to
sysconf(_SC_THREAD_DESTRUCTOR_ITERATIONS) in any process.[/CX]

The <threads.h> header shall define the types cnd_t, mtx_t, once_flag, thrd_t, and tss_t
as complete object types, the type thrd_start_t as the function pointer type int (*)(void*),
and the type tss_dtor_t as the function pointer type void (*)(void*). [CX]The type thrd_t
shall be defined to be the same type that pthread_t is defined to be in <pthread.h>.[/CX]

The <threads.h> header shall define the enumeration constants mtx_plain,
mtx_recursive, mtx_timed, thrd_busy, thrd_error, thrd_nomem, thrd_success
and thrd_timedout.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

void call_once(once_flag *, void (*)(void));
int cnd_broadcast(cnd_t *);
void cnd_destroy(cnd_t *);
int cnd_init(cnd_t *);
int cnd_signal(cnd_t *);
int cnd_timedwait(cnd_t * restrict, mtx_t * restrict,

const struct timespec * restrict);
int cnd_wait(cnd_t *, mtx_t *);
void mtx_destroy(mtx_t *);
int mtx_init(mtx_t *, int);
int mtx_lock(mtx_t *);
int mtx_timedlock(mtx_t * restrict,

const struct timespec * restrict);
int mtx_trylock(mtx_t *);
int mtx_unlock(mtx_t *);
int thrd_create(thrd_t *, thrd_start_t, void *);
thrd_t thrd_current(void);
int thrd_detach(thrd_t);
int thrd_equal(thrd_t, thrd_t);
_Noreturn void thrd_exit(int);
int thrd_join(thrd_t, int *);
int thrd_sleep(const struct timespec *,

struct timespec *);
void thrd_yield(void);
int tss_create(tss_t *, tss_dtor_t);
void tss_delete(tss_t);
void *tss_get(tss_t);

795
796

797
798
799
800

801
802
803
804
805
806
807

808
809
810
811

812
813
814

815
816

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

int tss_set(tss_t, void *);

Inclusion of the <threads.h> header shall make symbols defined in the header <time.h>
visible.

APPLICATION USAGE
The <threads.h> header is optional in the ISO C standard but is mandated by POSIX.1-
20xx. Note however that subprofiles can choose to make this header optional (see [xref to
2.1.5.1 Subprofiling Considerations]), and therefore application portability to subprofile
implementations would benefit from checking whether __STDC_NO_THREADS__ is
defined before inclusion of <threads.h>.

The features provided by <threads.h> are not as extensive as those provided by
<pthread.h>. It is present on POSIX implementations in order to facilitate porting of ISO C
programs that use it. It is recommended that applications intended for use on POSIX
implementations use <pthread.h> rather than <threads.h> even if none of the additional
features are needed initially, to save the need to convert should the need to use them arise
later in the application's lifecycle.

RATIONALE
Although the <threads.h> header is optional in the ISO C standard, it is mandated by
POSIX.1-20xx because <pthread.h> is mandatory and the interfaces in <threads.h> can
easily be implemented as a thin wrapper for interfaces in <pthread.h>.

The type thrd_t is required to be defined as the same type that pthread_t is defined to be in
<pthread.h> because thrd_current() and pthread_self() need to return the same thread ID
when called from the initial thread. However, these types are not fully interchangeable (that
is, it is not always possible to pass a thread ID obtained as a thrd_t to a function that takes a
pthread_t, and vice versa) because threads created using thrd_create() have a different exit
status than pthreads threads, which is reflected in differences between the prototypes for
thrd_create() and pthread_create(), thrd_exit() and pthread_exit(), and thrd_join() and
pthread_join(); also, thrd_join() has no way to indicate that a thread was cancelled.

The standard developers considered making it implementation-defined whether the types
cnd_t, mtx_t and tss_t are interchangeable with the corresponding types pthread_cond_t,
pthread_mutex_t and pthread_key_t defined in <pthread.h> (that is, whether any
function that can be called with a valid cnd_t can also be called with a valid
pthread_cond_t, and vice versa, and likewise for the other types). However, this would
have meant extending mtx_lock() to provide a way for it to indicate that the owner of a
mutex has terminated (equivalent to [EOWNERDEAD]). It was felt that such an extension
would be invention. Although there was no similar concern for cnd_t and tss_t, they were
treated the same way as mtx_t for consistency. See also the RATIONALE for mtx_lock()
concerning the inability of mtx_t to contain information about whether or not a mutex
supports timeout if it is the same type as pthread_mutex_t.

FUTURE DIRECTIONS
None.

SEE ALSO
<limits.h>, <pthread.h>, <time.h>

XSH Section 2.9, call_once(), cnd_broadcast(), cnd_destroy(), cnd_timedwait(),

844

845
846

847
848
849
850
851
852

853
854
855
856
857
858

859
860
861
862

863
864
865
866
867
868
869
870

871
872
873
874
875
876
877
878
879
880
881

882
883

884
885

886

mtx_destroy(), mtx_lock(), sysconf(), thrd_create(), thrd_current(), thrd_detach(),
thrd_equal(), thrd_exit(), thrd_join(), thrd_sleep(), thrd_yield(), tss_create(), tss_delete(),
tss_get().

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.27.1 para 4
On page 425 line 14453 section <time.h>, remove the CX shading from:

The <time.h> header shall declare the timespec structure, which shall include at least the
following members:

time_t tv_sec Seconds.
long tv_nsec Nanoseconds.

and change the members to:

time_t tv_sec Whole seconds.
long tv_nsec Nanoseconds [0, 999 999 999].

Ref 7.27.1 para 2
On page 426 line 14467 section <time.h>, add to the list of macros:

TIME_UTC An integer constant greater than 0 that designates the UTC time base
in calls to timespec_get(). The value shall be suitable for use in #if
preprocessing directives.

Ref 7.27.2.5
On page 427 line 14524 section <time.h>, add to the list of functions:

int timespec_get(struct timespec *, int);

Ref 7.28
On page 433 line 14736 insert a new <uchar.h> section:

NAME
uchar.h — Unicode character handling

SYNOPSIS
#include <uchar.h>

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The <uchar.h> header shall define the following types:

mbstate_t As described in <wchar.h>.

887
888
889

890
891

892
893

894
895

896
897

898

899
900

901
902

903
904
905

906
907

908

909
910

911
912

913
914

915
916
917
918

919

920

size_t As described in <stddef.h>.

char16_t The same type as uint_least16_t, described in <stdint.h>.

char32_t The same type as uint_least32_t, described in <stdint.h>.

The following shall be declared as functions and may also be defined as macros. Function
prototypes shall be provided.

size_t c16rtomb(char *restrict, char16_t,
mbstate_t *restrict);

size_t c32rtomb(char *restrict, char32_t,
mbstate_t *restrict);

size_t mbrtoc16(char16_t *restrict, const char *restrict,
size_t, mbstate_t *restrict);

size_t mbrtoc32(char32_t *restrict, const char *restrict,
size_t, mbstate_t *restrict);

[CX]Inclusion of the <uchar.h> header may make visible all symbols from the headers
<stddef.h>, <stdint.h> and <wchar.h>.[/CX]

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<stddef.h>, <stdint.h>, <wchar.h>

XSH c16rtomb(), c32rtomb(), mbrtoc16(), mbrtoc32()

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.22.4.5 para 1
On page 447 line 15388 section <unistd.h>, change:

void _exit(int);

to:

_Noreturn void _exit(int);

Ref 7.29.1 para 2
On page 458 line 15801 section <wchar.h>, change:

mbstate_t An object type other than an array type …

to:

921

922

923

924
925

926
927
928
929
930
931
932
933

934
935

936
937

938
939

940
941

942
943

944

945
946

947
948

949

950

951

952
953

954

955

mbstate_t A complete object type other than an array type …

Changes to XSH

Ref 7.1.4 paras 5, 6
On page 471 line 16224 section 2.1.1 Use and Implementation of Functions, add two numbered list
items:

6. Functions shall prevent data races as follows: A function shall not directly or indirectly
access objects accessible by threads other than the current thread unless the objects are
accessed directly or indirectly via the function’s arguments. A function shall not directly or
indirectly modify objects accessible by threads other than the current thread unless the
objects are accessed directly or indirectly via the function’s non-const arguments.
Implementations may share their own internal objects between threads if the objects are not
visible to applications and are protected against data races.

7. Functions shall perform all operations solely within the current thread if those operations
have effects that are visible to applications.

Ref K.3.1.1
On page 473 line 16283 section 2.2.1, add a new subsection:

2.2.1.3 The __STDC_WANT_LIB_EXT1__ Feature Test Macro

A POSIX-conforming [XSI]or XSI-conforming[/XSI] application can define the feature test
macro __STDC_WANT_LIB_EXT1__ before inclusion of any header.

When an application includes a header described by POSIX.1-20xx, and when this feature
test macro is defined to have the value 1, the header may make visible those symbols
specified for the header in Annex K of the ISO C standard that are not already explicitly
permitted by POSIX.1-20xx to be made visible in the header. These symbols are listed in
[xref to 2.2.2].

When an application includes a header described by POSIX.1-20xx, and when this feature
test macro is either undefined or defined to have the value 0, the header shall not make any
additional symbols visible that are not already made visible by the feature test macro
_POSIX_C_SOURCE [XSI]or _XOPEN_SOURCE[/XSI] as described above, except when
enabled by another feature test macro.

Ref 7.31.8 para 1
On page 475 line 16347 section 2.2.2, insert a row in the table:

<stdatomic.h> atomic_[a-z], memory_[a-z]

Ref 7.31.15 para 1
On page 476 line 16373 section 2.2.2, insert a row in the table:

<threads.h> cnd_[a-z], mtx_[a-z], thrd_[a-z],
tss_[a-z]

956

957

958
959
960

961
962
963
964
965
966
967

968
969

970
971

972

973
974

975
976
977
978
979

980
981
982
983
984

985
986

987
988

Ref 7.31.8 para 1
On page 477 line 16410 section 2.2.2, insert a row in the table:

<stdatomic.h> ATOMIC_[A-Z]

Ref 7.31.14 para 1
On page 477 line 16417 section 2.2.2, insert a row in the table:

<time.h> TIME_[A-Z]

Ref K.3.4 - K.3.9
On page 477 line 16436 section 2.2.2 The Name Space, add:

When the feature test macro__STDC_WANT_LIB_EXT1__ is defined with the value 1
(see [xref to 2.2.1]), implementations may add symbols to the headers shown in the
following table provided the identifiers for those symbols have one of the corresponding
complete names in the table.

Header Complete Name

<stdio.h> fopen_s, fprintf_s, freopen_s, fscanf_s, gets_s, printf_s, scanf_s, snprintf_s,
sprintf_s, sscanf_s, tmpfile_s, tmpnam_s, vfprintf_s, vfscanf_s, vprintf_s,
vscanf_s, vsnprintf_s, vsprintf_s, vsscanf_s

<stdlib.h> abort_handler_s, bsearch_s, getenv_s, ignore_handler_s, mbstowcs_s,
qsort_s, set_constraint_handler_s, wcstombs_s, wctomb_s

<time.h> asctime_s, ctime_s, gmtime_s, localtime_s

<wchar.h> fwprintf_s, fwscanf_s, mbsrtowcs_s, snwprintf_s, swprintf_s, swscanf_s,
vfwprintf_s, vfwscanf_s, vsnwprintf_s, vswprintf_s, vswscanf_s,
vwprintf_s, vwscanf_s, wcrtomb_s, wmemcpy_s, wmemmove_s, wprintf_s,
wscanf_s

When the feature test macro__STDC_WANT_LIB_EXT1__ is defined with the value 1
(see [xref to 2.2.1]), if any header in the following table is included, macros with the
complete names shown may be defined.

Header Complete Name

<stdint.h> RSIZE_MAX

<stdio.h> L_tmpnam_s, TMP_MAX_S

Note: The above two tables only include those symbols from Annex K of the ISO C standard that
are not already allowed to be visible by entries in earlier tables in this section.

Ref 7.1.3 para 1
On page 478 line 16438 section 2.2.2, change:

With the exception of identifiers beginning with the prefix _POSIX_, all identifiers that
begin with an <underscore> and either an uppercase letter or another <underscore> are
always reserved for any use by the implementation.

989
990

991
992

993
994

995
996
997
998

999
1000
1001

1002
1003

1004
1005

1006
1007
1008

to:

With the exception of identifiers beginning with the prefix _POSIX_ and those identifiers
which are lexically identical to keywords defined by the ISO C standard (for example
_Bool), all identifiers that begin with an <underscore> and either an uppercase letter or
another <underscore> are always reserved for any use by the implementation.

Ref 7.1.3 para 1
On page 478 line 16448 section 2.2.2, change:

that have external linkage are always reserved

to:

that have external linkage and errno are always reserved

Ref 7.1.3 para 1
On page 479 line 16453 section 2.2.2, add the following in the appropriate place in the list:

aligned_alloc c32rtomb
at_quick_exit call_once
atomic_compare_exchange_strong cnd_broadcast
atomic_compare_exchange_strong_explicit cnd_destroy
atomic_compare_exchange_weak cnd_init
atomic_compare_exchange_weak_explicit cnd_signal
atomic_exchange cnd_timedwait
atomic_exchange_explicit cnd_wait
atomic_fetch_add kill_dependency
atomic_fetch_add_explicit mbrtoc16
atomic_fetch_and mbrtoc32
atomic_fetch_and_explicit mtx_destroy
atomic_fetch_or mtx_init
atomic_fetch_or_explicit mtx_lock
atomic_fetch_sub mtx_timedlock
atomic_fetch_sub_explicit mtx_trylock
atomic_fetch_xor mtx_unlock
atomic_fetch_xor_explicit quick_exit
atomic_flag_clear thrd_create
atomic_flag_clear_explicit thrd_current
atomic_flag_test_and_set thrd_detach
atomic_flag_test_and_set_explicit thrd_equal
atomic_init thrd_exit
atomic_is_lock_free thrd_join
atomic_load thrd_sleep
atomic_load_explicit thrd_yield
atomic_signal_fence timespec_get
atomic_store tss_create
atomic_store_explicit tss_delete
atomic_thread_fence tss_get
c16rtomb tss_set

1009

1010
1011
1012
1013

1014
1015

1016

1017

1018

1019
1020

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

Ref 7.1.2 para 4
On page 480 line 16551 section 2.2.2, change:

Prior to the inclusion of a header, the application shall not define any macros with names
lexically identical to symbols defined by that header.

to:

Prior to the inclusion of a header, or when any macro defined in the header is expanded, the
application shall not define any macros with names lexically identical to symbols defined by
that header.

Ref 7.26.5.1
On page 490 line 16980 section 2.4.2 Realtime Signal Generation and Delivery, change:

The function shall be executed in an environment as if it were the start_routine for a newly
created thread with thread attributes specified by sigev_notify_attributes.

to:

The function shall be executed in a newly created thread as if it were the start_routine for a
call to pthread_create() with the thread attributes specified by sigev_notify_attributes.

Ref 7.14.1.1 para 5
On page 493 line 17088 section 2.4.3 Signal Actions, change:

with static storage duration

to:

with static or thread storage duration that is not a lock-free atomic object

Ref 7.14.1.1 para 5
On page 493 line 17090 section 2.4.3 Signal Actions, after applying bug 711 change:

other than one of the functions and macros listed in the following table

to:

other than one of the functions and macros specified below as being async-signal-safe

Ref 7.14.1.1 para 5
On page 494 line 17133 section 2.4.3 Signal Actions, add quick_exit() to the table of async-signal-
safe functions.

Ref 7.14.1.1 para 5
On page 494 line 17147 section 2.4.3 Signal Actions, change:

Any function or function-like macro not in the above table may be unsafe with respect to
signals.

to:

1052
1053

1054
1055

1056

1057
1058
1059

1060
1061

1062
1063

1064

1065
1066

1067
1068

1069

1070

1071

1072
1073

1074

1075

1076

1077
1078
1079

1080
1081

1082
1083

1084

In addition, the functions in <stdatomic.h> other than atomic_init() shall be async-signal-
safe when the atomic arguments are lock-free, and the atomic_is_lock_free() function shall
be async-signal-safe when called with an atomic argument.

All other functions (including generic functions) and function-like macros may be unsafe
with respect to signals.

Ref 7.21.2 para 7,8
On page 496 line 17228 section 2.5 Standard I/O Streams, add a new paragraph:

Each stream shall have an associated lock that is used to prevent data races when multiple
threads of execution access a stream, and to restrict the interleaving of stream operations
performed by multiple threads. Only one thread can hold this lock at a time. The lock shall
be reentrant: a single thread can hold the lock multiple times at a given time. All functions
that read, write, position, or query the position of a stream, [CX]except those with names
ending _unlocked[/CX], shall lock the stream [CX] as if by a call to flockfile()[/CX] before
accessing it and release the lock [CX] as if by a call to funlockfile()[/CX] when the access is
complete.

Ref (none)
On page 498 line 17312 section 2.5.2 Stream Orientation and Encoding Rules, change:

For conformance to the ISO/IEC 9899: 1999 standard, the definition of a stream includes an
“orientation”.

to:

The definition of a stream includes an “orientation”.

Ref 7.26.5.8
On page 508 line 17720 section 2.8.4 Process Scheduling, change:

When a running thread issues the sched_yield() function

to:

When a running thread issues the sched_yield() or thrd_yield() function

Ref 7.17.2.2 para 3, 7.22.2.2 para 3
On page 513 line 17907,17916 section 2.9.1 Thread-Safety, add atomic_init() and srand() to the list
of functions that need not be thread-safe.

Ref 7.12.8.3, 7.22.4.8
On page 513 line 17907-17927 section 2.9.1 Thread-Safety, delete the following from the list of
functions that need not be thread-safe:

lgamma(), lgammaf(), lgammal(), system()

Note to reviewers: deletion of mblen(), mbtowc(), and wctomb() from this list is the subject of
Mantis bug 708.

1085
1086
1087

1088
1089

1090
1091

1092
1093
1094
1095
1096
1097
1098
1099

1100
1101

1102
1103

1104

1105

1106
1107

1108

1109

1110

1111
1112
1113

1114
1115
1116

1117

1118
1119

Ref 7.28.1 para 1
On page 513 line 17928 section 2.9.1 Thread-Safety, change:

The ctermid() and tmpnam() functions need not be thread-safe if passed a NULL argument.
The mbrlen(), mbrtowc(), mbsnrtowcs(), mbsrtowcs(), wcrtomb(), wcsnrtombs(), and
wcsrtombs() functions need not be thread-safe if passed a NULL ps argument.

to:

The ctermid() and tmpnam() functions need not be thread-safe if passed a null pointer
argument. The c16rtomb(), c32rtomb(), mbrlen(), mbrtoc16(), mbrtoc32(), mbrtowc(),
mbsnrtowcs(), mbsrtowcs(), wcrtomb(), wcsnrtombs(), and wcsrtombs() functions need not
be thread-safe if passed a null ps argument. The lgamma(), lgammaf(), and lgammal()
functions shall be thread-safe [XSI]except that they need not avoid data races when storing a
value in the signgam variable[/XSI].

Ref 7.1.4 para 5
On page 513 line 17934 section 2.9.1 Thread-Safety, change:

Implementations shall provide internal synchronization as necessary in order to satisfy this
requirement.

to:

Some functions that are not required to be thread-safe are nevertheless required to avoid data
races with either all or some other functions, as specified on their individual reference pages.

Implementations shall provide internal synchronization as necessary in order to satisfy
thread-safety requirements.

Ref 7.26.5
On page 513 line 17944 section 2.9.2 Thread IDs, change:

The lifetime of a thread ID ends after the thread terminates if it was created with the
detachstate attribute set to PTHREAD_CREATE_DETACHED or if pthread_detach() or
pthread_join() has been called for that thread.

to:

The lifetime of a thread ID ends after the thread terminates if it was created using
pthread_create() with the detachstate attribute set to PTHREAD_CREATE_DETACHED or
if pthread_detach(), pthread_join(), thrd_detach() or thrd_join() has been called for that
thread.

Ref 7.26.5
On page 514 line 17950 section 2.9.2 Thread IDs, change:

If a thread is detached, its thread ID is invalid for use as an argument in a call to
pthread_detach() or pthread_join().

to:

1120
1121

1122
1123
1124

1125

1126
1127
1128
1129
1130
1131

1132
1133

1134
1135

1136

1137
1138

1139
1140

1141
1142

1143
1144
1145

1146

1147
1148
1149
1150

1151
1152

1153
1154

1155

If a thread is detached, its thread ID is invalid for use as an argument in a call to
pthread_detach(), pthread_join(), thrd_detach() or thrd_join().

Ref 7.26.4
On page 514 line 17956 section 2.9.3 Thread Mutexes, change:

A thread shall become the owner of a mutex, m, when one of the following occurs:

to:

A thread shall become the owner of a mutex, m, of type pthread_mutex_t when one of the
following occurs:

Ref 7.26.3, 7.26.4
On page 514 line 17972 section 2.9.3 Thread Mutexes, add two new paragraphs and lists:

A thread shall become the owner of a mutex, m, of type mtx_t when one of the following
occurs:

• It calls mtx_lock() with m as the mtx argument and the call returns thrd_success.
• It calls mtx_trylock() with m as the mtx argument and the call returns

thrd_success.
• It calls mtx_timedlock() with m as the mtx argument and the call returns

thrd_success.
• It calls cnd_wait() with m as the mtx argument and the call returns thrd_success.
• It calls cnd_timedwait() with m as the mtx argument and the call returns

thrd_success or thrd_timedout.

The thread shall remain the owner of m until one of the following occurs:

• It executes mtx_unlock() with m as the mtx argument.
• It blocks in a call to cnd_wait() with m as the mtx argument.
• It blocks in a call to cnd_timedwait() with m as the mtx argument.

Ref 7.26.4
On page 514 line 17980 section 2.9.3 Thread Mutexes, change:

Robust mutexes provide a means to enable the implementation to notify other threads in the
event of a process terminating while one of its threads holds a mutex lock.

to:

Robust mutexes provide a means to enable the implementation to notify other threads in the
event of a process terminating while one of its threads holds a lock on a mutex of type
pthread_mutex_t.

Ref 7.26.5
On page 517 line 18085 section 2.9.5 Thread Cancellation, change:

The thread cancellation mechanism allows a thread to terminate the execution of any other
thread in the process in a controlled manner.

1156
1157

1158
1159

1160

1161

1162
1163

1164
1165

1166
1167

1168
1169
1170
1171
1172
1173
1174
1175

1176

1177
1178
1179

1180
1181

1182
1183

1184

1185
1186
1187

1188
1189

1190
1191

to:

The thread cancellation mechanism allows a thread to terminate the execution of any thread
in the process, except for threads created using thrd_create(), in a controlled manner.

Ref 7.26.3, 7.26.5.6
On page 518 line 18119-18137 section 2.9.5.2 Cancellation Points, add the following to the list of
functions that are required to be cancellation points:

cnd_timedwait(), cnd_wait(), thrd_join(), thrd_sleep()

Ref 7.26.5
On page 520 line 18225 section 2.9.5.3 Thread Cancellation Cleanup Handlers, change:

Each thread maintains a list of cancellation cleanup handlers.

to:

Each thread that was not created using thrd_create() maintains a list of cancellation cleanup
handlers.

Ref 7.26.6.1
On page 521 line 18240 section 2.9.5.3 Thread Cancellation Cleanup Handlers, change:

as described for pthread_key_create()

to:

as described for pthread_key_create() and tss_create()

Ref 7.26
On page 523 line 18337 section 2.9.9 Synchronization Object Copies and Alternative Mappings,
add a new sentence:

For ISO C functions declared in <threads.h>, the above requirements shall apply as if
condition variables of type cnd_t and mutexes of type mtx_t have a process-shared attribute
that is set to PTHREAD_PROCESS_PRIVATE.

Ref 7.26.3
On page 547 line 19279 section 2.12.1 Defined Types, change:

pthread_cond_t

to

pthread_cond_t, cnd_t

Ref 7.26.6, 7.26.4
On page 547 line 19281 section 2.12.1 Defined Types, change:

pthread_key_t
pthread_mutex_t

1192

1193
1194

1195
1196
1197

1198

1199
1200

1201

1202

1203
1204

1205
1206

1207

1208

1209

1210
1211
1212

1213
1214
1215

1216
1217

1218

1219

1220

1221
1222

1223
1224

to

pthread_key_t, tss_t
pthread_mutex_t, mtx_t

Ref 7.26.2.1
On page 547 line 19284 section 2.12.1 Defined Types, change:

pthread_once_t

to

pthread_once_t, once_flag

Ref 7.26.5
On page 547 line 19287 section 2.12.1 Defined Types, change:

pthread_t

to

pthread_t, thrd_t

Ref 7.3.9.3
On page 552 line 19370 insert a new CMPLX() section:

NAME
CMPLX — make a complex value

SYNOPSIS
#include <complex.h>

double complex CMPLX(double x, double y);
float complex CMPLXF(float x, float y);
long double complex CMPLXL(long double x, long double y);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The CMPLX macros shall expand to an expression of the specified complex type, with the
real part having the (converted) value of x and the imaginary part having the (converted)
value of y. The resulting expression shall be suitable for use as an initializer for an object
with static or thread storage duration, provided both arguments are likewise suitable.

RETURN VALUE
The CMPLX macros return the complex value x + i y (where i is the imaginary unit).

These macros shall behave as if the implementation supported imaginary types and the
definitions were:

1225

1226
1227

1228
1229

1230

1231

1232

1233
1234

1235

1236

1237

1238
1239

1240
1241

1242
1243

1244
1245
1246

1247
1248
1249
1250

1251
1252
1253
1254

1255
1256

1257
1258

#define CMPLX(x, y) ((double complex)((double)(x) + \
_Imaginary_I * (double)(y)))

#define CMPLXF(x, y) ((float complex)((float)(x) + \
_Imaginary_I * (float)(y)))

#define CMPLXL(x, y) ((long double complex)((long double)(x) + \
_Imaginary_I * (long double)(y)))

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <complex.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.22.4.5 para 1
On page 553 line 19384 section _Exit(), change:

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

to:

_Noreturn void _Exit(int status);

#include <unistd.h>

_Noreturn void _exit(int status);

Ref 7.22.4.5 para 2
On page 553 line 19396 section _Exit(), change:

shall not call functions registered with atexit() nor any registered signal handlers

to:

shall not call functions registered with atexit() nor at_quick_exit(), nor any registered signal

1259
1260
1261
1262
1263
1264

1265
1266

1267
1268

1269
1270

1271
1272

1273
1274

1275
1276

1277
1278

1279
1280

1281

1282

1283

1284

1285

1286

1287

1288
1289

1290

1291

1292

handlers

Ref (none)
On page 557 line 19562 section _Exit(), change:

The ISO/IEC 9899: 1999 standard adds the _Exit() function

to:

The ISO/IEC 9899: 1999 standard added the _Exit() function

Ref 7.22.4.3, 7.22.4.7
On page 557 line 19568 section _Exit(), add at_quick_exit and quick_exit to the SEE ALSO section.

Ref 7.22.4.1 para 1
On page 565 line 19761 section abort(), change:

void abort(void);

to:

_Noreturn void abort(void);

Ref (none)
On page 565 line 19785 section abort(), change:

The ISO/IEC 9899: 1999 standard requires the abort() function to be async-signal-safe.

to:

The ISO/IEC 9899: 1999 standard required (and the current standard still requires) the
abort() function to be async-signal-safe.

Ref 7.22.3.1
On page 597 line 20771 insert the following new aligned_alloc() section:

NAME
aligned_alloc — allocate memory with a specified alignment

SYNOPSIS
#include <stdlib.h>

void *aligned_alloc(size_t alignment, size_t size);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The aligned_alloc() function shall allocate unused space for an object whose alignment is
specified by alignment, whose size in bytes is specified by size and whose value is
indeterminate.

1293

1294
1295

1296

1297

1298

1299
1300

1301
1302

1303

1304

1305

1306
1307

1308

1309

1310
1311

1312
1313

1314
1315

1316
1317

1318

1319
1320
1321
1322

1323
1324
1325

The order and contiguity of storage allocated by successive calls to aligned_alloc() is
unspecified. Each such allocation shall yield a pointer to an object disjoint from any other
object. The pointer returned shall point to the start (lowest byte address) of the allocated
space. If the value of alignment is not a valid alignment supported by the implementation, a
null pointer shall be returned. If the space cannot be allocated, a null pointer shall be
returned. If the size of the space requested is 0, the behavior is implementation-defined:
either a null pointer shall be returned to indicate an error, or the behavior shall be as if the
size were some non-zero value, except that the behavior is undefined if the returned pointer
is used to access an object.

For purposes of determining the existence of a data race, aligned_alloc() shall behave as
though it accessed only memory locations accessible through its arguments and not other
static duration storage. The function may, however, visibly modify the storage that it
allocates. Calls to aligned_alloc(), calloc(), free(), malloc(),
[ADV]posix_memalign(),[/ADV] and realloc() that allocate or deallocate a particular region
of memory shall occur in a single total order (see [xref to XBD 4.12.1]), and each such
deallocation call shall synchronize with the next allocation (if any) in this order.

RETURN VALUE
Upon successful completion with size not equal to 0, aligned_alloc() shall return a pointer to
the allocated space. If size is 0, either:

• A null pointer shall be returned [CX]and errno may be set to an implementation-
defined value,[/CX] or

• A pointer to the allocated space shall be returned. The application shall ensure that
the pointer is not used to access an object.

Otherwise, it shall return a null pointer [CX]and set errno to indicate the error[/CX].

ERRORS

The aligned_alloc() function shall fail if:

[CX][EINVAL] The value of alignment is not a valid alignment supported by the
implementation.

[ENOMEM] Insufficient storage space is available.[/CX]

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

1326
1327
1328
1329
1330
1331
1332
1333
1334

1335
1336
1337
1338
1339
1340
1341

1342
1343
1344

1345
1346

1347
1348

1349

1350

1351

1352
1353

1354

1355
1356

1357
1358

1359
1360

1361
1362

1363

calloc, free, getrlimit, malloc, posix_memalign, realloc

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.27.3, 7.1.4 para 5
On page 600 line 20911 section asctime(), change:

[CX]The asctime() function need not be thread-safe.[/CX]

to:
The asctime() function need not be thread-safe; however, asctime() shall avoid data races
with all functions other than itself, ctime(), gmtime() and localtime().

Ref 7.22.4.3
On page 618 line 21380 insert the following new at_quick_exit() section:

NAME
at_quick_exit — register a function to be called from quick_exit()

SYNOPSIS
#include <stdlib.h>

int at_quick_exit(void (*func)(void));

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The at_quick_exit() function shall register the function pointed to by func, to be called
without arguments should quick_exit() be called. It is unspecified whether a call to the
at_quick_exit() function that does not happen before the quick_exit() function is called will
succeed.

At least 32 functions can be registered with at_quick_exit().

[CX]After a successful call to any of the exec functions, any functions previously registered
by at_quick_exit() shall no longer be registered.[/CX]

RETURN VALUE
Upon successful completion, at_quick_exit() shall return 0; otherwise, it shall return a non-
zero value.

ERRORS
No errors are defined.

EXAMPLES
None.

1364

1365

1366
1367

1368
1369

1370

1371
1372
1373

1374
1375

1376
1377

1378
1379

1380

1381
1382
1383
1384

1385
1386
1387
1388

1389

1390
1391

1392
1393
1394

1395
1396

1397
1398

APPLICATION USAGE
The at_quick_exit() function registrations are distinct from the atexit() registrations, so
applications might need to call both registration functions with the same argument.

The functions registered by a call to at_quick_exit() must return to ensure that all registered
functions are called.

The application should call sysconf() to obtain the value of {ATEXIT_MAX}, the number of
functions that can be registered. There is no way for an application to tell how many
functions have already been registered with at_quick_exit().

Since the behavior is undefined if the quick_exit() function is called more than once,
portable applications calling at_quick_exit() must ensure that the quick_exit() function is not
called when the functions registered by the at_quick_exit() function are called.

If a function registered by the at_quick_exit() function is called and a portable application
needs to stop further quick_exit() processing, it must call the _exit() function or the _Exit()
function or one of the functions which cause abnormal process termination.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
atexit, exec, exit, quick_exit, sysconf

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.22.4.3
On page 618 line 21381 section atexit(), change:

atexit — register a function to run at process termination

to:

atexit — register a function to be called from exit() or after return from main()

Ref 7.22.4.2 para 2, 7.22.4.3
On page 618 line 21389 section atexit(), change:

The atexit() function shall register the function pointed to by func, to be called without
arguments at normal program termination. At normal program termination, all functions
registered by the atexit() function shall be called, in the reverse order of their registration,
except that a function is called after any previously registered functions that had already
been called at the time it was registered. Normal termination occurs either by a call to exit()
or a return from main().

1399
1400
1401

1402
1403

1404
1405
1406

1407
1408
1409

1410
1411
1412

1413
1414

1415
1416

1417
1418

1419

1420
1421

1422
1423

1424

1425

1426

1427
1428

1429
1430
1431
1432
1433
1434

to:

The atexit() function shall register the function pointed to by func, to be called without
arguments from exit(), or after return from the initial call to main(), or on the last thread
termination. If the exit() function is called, it is unspecified whether a call to the atexit()
function that does not happen before exit() is called will succeed.

Note to reviewers: the part about all registered functions being called in reverse order is duplicated
on the exit() page and is not needed here.

Ref 7.22.4.2 para 2
On page 618 line 21405 section atexit(), insert a new first APPLICATION USAGE paragraph:

The atexit() function registrations are distinct from the at_quick_exit() registrations, so
applications might need to call both registration functions with the same argument.

Ref 7.22.4.3
On page 618 line 21410 section atexit(), change:

Since the behavior is undefined if the exit() function is called more than once, portable
applications calling atexit() must ensure that the exit() function is not called at normal
process termination when all functions registered by the atexit() function are called.

All functions registered by the atexit() function are called at normal process termination,
which occurs by a call to the exit() function or a return from main() or on the last thread
termination, when the behavior is as if the implementation called exit() with a zero argument
at thread termination time.

If, at normal process termination, a function registered by the atexit() function is called and a
portable application needs to stop further exit() processing, it must call the _exit() function
or the _Exit() function or one of the functions which cause abnormal process termination.

to:

Since the behavior is undefined if the exit() function is called more than once, portable
applications calling atexit() must ensure that the exit() function is not called when the
functions registered by the atexit() function are called.

If a function registered by the atexit() function is called and a portable application needs to
stop further exit() processing, it must call the _exit() function or the _Exit() function or one
of the functions which cause abnormal process termination.

Ref 7.22.4.3
On page 619 line 21425 section atexit(), add at_quick_exit to the SEE ALSO section.

Ref 7.16
On page 624 line 21548 insert the following new atomic_*() sections:

NAME
atomic_compare_exchange_strong, atomic_compare_exchange_strong_explicit,
atomic_compare_exchange_weak, atomic_compare_exchange_weak_explicit — atomically

1435

1436
1437
1438
1439

1440
1441

1442
1443

1444
1445

1446
1447

1448
1449
1450

1451
1452
1453
1454

1455
1456
1457

1458

1459
1460
1461

1462
1463
1464

1465
1466

1467
1468

1469
1470
1471

compare and exchange the values of two objects

SYNOPSIS
#include <stdatomic.h>
_Bool atomic_compare_exchange_strong(volatile A *object,

C *expected, C desired);
_Bool atomic_compare_exchange_strong_explicit(volatile A *object,

C *expected, C desired, memory_order success,
memory_order failure);

_Bool atomic_compare_exchange_weak(volatile A *object,
C *expected, C desired);

_Bool atomic_compare_exchange_weak_explicit(volatile A *object,
C *expected, C desired, memory_order success,
memory_order failure);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_compare_exchange_strong_explicit() generic function shall atomically compare
the contents of the memory pointed to by object for equality with that pointed to by
expected, and if true, shall replace the contents of the memory pointed to by object
with desired, and if false, shall update the contents of the memory pointed to by expected
with that pointed to by object. This operation shall be an atomic read-modify-write operation
(see [xref to XBD 4.12.1]). If the comparison is true, memory shall be affected according to
the value of success, and if the comparison is false, memory shall be affected according to
the value of failure. The application shall ensure that failure is not
memory_order_release nor memory_order_acq_rel, and shall ensure that failure is
no stronger than success.

The atomic_compare_exchange_strong() generic function shall be equivalent to
atomic_compare_exchange_strong_explicit() called with success and failure both set to
memory_order_seq_cst.

The atomic_compare_exchange_weak_explicit() generic function shall be equivalent to
atomic_compare_exchange_strong_explicit(), except that the compare-and-exchange
operation may fail spuriously. That is, even when the contents of memory referred to by
expected and object are equal, it may return zero and store back to expected the same
memory contents that were originally there.

The atomic_compare_exchange_weak() generic function shall be equivalent to
atomic_compare_exchange_weak_explicit() called with success and failure both set to
memory_order_seq_cst.

RETURN VALUE
These generic functions shall return the result of the comparison.

ERRORS
No errors are defined.

1472

1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

1485
1486
1487
1488

1489
1490

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500

1501
1502
1503

1504
1505
1506
1507
1508

1509
1510
1511

1512
1513

1514
1515

EXAMPLES
None.

APPLICATION USAGE
A consequence of spurious failure is that nearly all uses of weak compare-and-exchange will
be in a loop. For example:

exp = atomic_load(&cur);
do {

des = function(exp);
} while (!atomic_compare_exchange_weak(&cur, &exp, des));

When a compare-and-exchange is in a loop, the weak version will yield better performance
on some platforms. When a weak compare-and-exchange would require a loop and a strong
one would not, the strong one is preferable.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.12.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
atomic_exchange, atomic_exchange_explicit — atomically exchange the value of an object

SYNOPSIS
#include <stdatomic.h>
C atomic_exchange(volatile A *object, C desired);
C atomic_exchange_explicit(volatile A *object,

C desired, memory_order order);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_exchange_explicit() generic function shall atomically replace the value pointed
to by object with desired. This operation shall be an atomic read-modify-write operation (see
[xref to XBD 4.12.1]). Memory shall be affected according to the value of order.

The atomic_exchange() generic function shall be equivalent to atomic_exchange_explicit()
called with order set to memory_order_seq_cst.

1516
1517

1518
1519
1520

1521
1522
1523
1524

1525
1526
1527

1528
1529

1530
1531

1532
1533

1534
1535

1536
1537

1538
1539
1540
1541
1542

1543
1544
1545
1546

1547
1548

1549
1550
1551

1552
1553

RETURN VALUE
These generic functions shall return the value pointed to by object immediately before the
effects.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.12.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
atomic_fetch_add, atomic_fetch_add_explicit, atomic_fetch_and,
atomic_fetch_and_explicit, atomic_fetch_or, atomic_fetch_or_explicit, atomic_fetch_sub,
atomic_fetch_sub_explicit, atomic_fetch_xor, atomic_fetch_xor_explicit — atomically
replace the value of an object with the result of a computation

SYNOPSIS
#include <stdatomic.h>
C atomic_fetch_add(volatile A *object, M operand);
C atomic_fetch_add_explicit(volatile A *object, M operand,

memory_order order);
C atomic_fetch_and(volatile A *object, M operand);
C atomic_fetch_and_explicit(volatile A *object, M operand,

memory_order order);
C atomic_fetch_or(volatile A *object, M operand);
C atomic_fetch_or_explicit(volatile A *object, M operand,

memory_order order);
C atomic_fetch_sub(volatile A *object, M operand);
C atomic_fetch_sub_explicit(volatile A *object, M operand,

memory_order order);
C atomic_fetch_xor(volatile A *object, M operand);
C atomic_fetch_xor_explicit(volatile A *object, M operand,

memory_order order);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is

1554
1555
1556

1557
1558

1559
1560

1561
1562

1563
1564

1565
1566

1567
1568

1569
1570

1571
1572
1573
1574
1575

1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

1593
1594
1595

unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_fetch_add_explicit() generic function shall atomically replace the value pointed
to by object with the result of adding operand to this value. This operation shall be an
atomic read-modify-write operation (see [xref to XBD 4.12.1]). Memory shall be affected
according to the value of order.

The atomic_fetch_add() generic function shall be equivalent to atomic_fetch_add_explicit()
called with order set to memory_order_seq_cst.

The other atomic_fetch_*() generic functions shall be equivalent to
atomic_fetch_add_explicit() if their name ends with explicit, or to atomic_fetch_add() if it
does not, respectively, except that they perform the computation indicated in their name,
instead of addition:

sub subtraction
or bitwise inclusive OR
xor bitwise exclusive OR
and bitwise AND

For addition and subtraction, the application shall ensure that A is an atomic integer type or
an atomic pointer type and is not atomic_bool. For the other operations, the application
shall ensure that A is an atomic integer type and is not atomic_bool.

For signed integer types, the computation shall silently wrap around on overflow; there are
no undefined results. For pointer types, the result can be an undefined address, but the
computations otherwise have no undefined behavior.

RETURN VALUE
These generic functions shall return the value pointed to by object immediately before the
effects.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The operation of these generic functions is nearly equivalent to the operation of the
corresponding compound assignment operators +=, -=, etc. The only differences are that the
compound assignment operators are not guaranteed to operate atomically, and the value
yielded by a compound assignment operator is the updated value of the object, whereas the
value returned by these generic functions is the previous value of the atomic object.

RATIONALE
None.

FUTURE DIRECTIONS

1596

1597
1598

1599
1600
1601
1602

1603
1604

1605
1606
1607
1608

1609
1610
1611
1612

1613
1614
1615

1616
1617
1618

1619
1620
1621

1622
1623

1624
1625

1626
1627
1628
1629
1630
1631

1632
1633

1634

None.

SEE ALSO
XBD Section 4.12.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
atomic_flag_clear, atomic_flag_clear_explicit — clear an atomic flag

SYNOPSIS
#include <stdatomic.h>
void atomic_flag_clear(volatile atomic_flag *object);
void atomic_flag_clear_explicit(

volatile atomic_flag *object, memory_order order);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these functions.

The atomic_flag_clear_explicit() function shall atomically place the atomic flag pointed to
by object into the clear state. Memory shall be affected according to the value of order,
which the application shall ensure is not memory_order_acquire nor
memory_order_acq_rel.

The atomic_flag_clear() function shall be equivalent to atomic_flag_clear_explicit() called
with order set to memory_order_seq_cst.

RETURN VALUE
These functions shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

1635

1636
1637

1638
1639

1640
1641

1642
1643
1644
1645
1646

1647
1648
1649
1650

1651
1652

1653
1654
1655
1656

1657
1658

1659
1660

1661
1662

1663
1664

1665
1666

1667
1668

1669
1670

1671

XBD Section 4.12.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
atomic_flag_test_and_set, atomic_flag_test_and_set_explicit — test and set an atomic flag

SYNOPSIS
#include <stdatomic.h>
_Bool atomic_flag_test_and_set(volatile atomic_flag *object);
_Bool atomic_flag_test_and_set_explicit(

volatile atomic_flag *object, memory_order order);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these functions.

The atomic_flag_test_and_set_explicit() function shall atomically place the atomic flag
pointed to by object into the set state and return the value corresponding to the immediately
preceding state. This operation shall be an atomic read-modify-write operation (see [xref to
XBD 4.12.1]). Memory shall be affected according to the value of order.

The atomic_flag_test_and_set() function shall be equivalent to
atomic_flag_test_and_set_explicit() called with order set to memory_order_seq_cst.

RETURN VALUE
These functions shall return the value that corresponds to the state of the atomic flag
immediately before the effects. The return value true shall correspond to the set state and the
return value false shall correspond to the clear state.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.12.1, <stdatomic.h>

1672

1673
1674

1675
1676

1677
1678
1679
1680
1681

1682
1683
1684
1685

1686
1687

1688
1689
1690
1691

1692
1693

1694
1695
1696
1697

1698
1699

1700
1701

1702
1703

1704
1705

1706
1707

1708
1709

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
atomic_init — initialize an atomic object

SYNOPSIS
#include <stdatomic.h>
void atomic_init(volatile A *obj, C value);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support this generic function.

The atomic_init() generic function shall initialize the atomic object pointed to by obj to the
value value, while also initializing any additional state that the implementation might need
to carry for the atomic object.

Although this function initializes an atomic object, it does not avoid data races; concurrent
access to the variable being initialized, even via an atomic operation, constitutes a data race.

RETURN VALUE
The atomic_init() generic function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
atomic_int guide;
atomic_init(&guide, 42);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

1710
1711

1712
1713

1714
1715
1716

1717
1718
1719
1720

1721
1722

1723
1724
1725

1726
1727

1728
1729

1730
1731

1732
1733
1734

1735
1736

1737
1738

1739
1740

1741
1742

1743
1744

NAME
atomic_is_lock_free — indicate whether or not atomic operations are lock-free

SYNOPSIS
#include <stdatomic.h>
_Bool atomic_is_lock_free(const volatile A *obj);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support this generic function.

The atomic_is_lock_free() generic function shall indicate whether or not atomic operations
on objects of the type pointed to by obj are lock-free; obj can be a null pointer.

RETURN VALUE
The atomic_is_lock_free() generic function shall return a non-zero value if and only if
atomic operations on objects of the type pointed to by obj are lock-free. During the lifetime
of the calling process, the result of the lock-free query shall be consistent for all pointers of
the same type.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Operations that are lock-free should also be address-free. That is, atomic operations on the
same memory location via two different addresses will communicate atomically. The
implementation should not depend on any per-process state. This restriction enables
communication via memory mapped into a process more than once and memory shared
between two processes.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
atomic_load, atomic_load_explicit — atomically obtain the value of an object

1745
1746

1747
1748
1749

1750
1751
1752
1753

1754
1755

1756
1757

1758
1759
1760
1761
1762

1763
1764

1765
1766

1767
1768

1769
1770
1771
1772
1773
1774

1775
1776

1777
1778

1779
1780

1781
1782

SYNOPSIS
#include <stdatomic.h>
C atomic_load(const volatile A *object);
C atomic_load_explicit(const volatile A *object,

memory_order order);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_load_explicit() generic function shall atomically obtain the value pointed to by
object. Memory shall be affected according to the value of order, which the application shall
ensure is not memory_order_release nor memory_order_acq_rel.

The atomic_load() generic function shall be equivalent to atomic_load_explicit() called with
order set to memory_order_seq_cst.

RETURN VALUE
These generic functions shall return the value pointed to by object.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.12.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
atomic_signal_fence, atomic_thread_fence — fence operations

SYNOPSIS
#include <stdatomic.h>
void atomic_signal_fence(memory_order order);
void atomic_thread_fence(memory_order order);

1783
1784
1785
1786
1787

1788
1789
1790
1791

1792
1793

1794
1795
1796

1797
1798

1799
1800

1801
1802

1803
1804

1805
1806

1807
1808

1809
1810

1811
1812

1813
1814

1815
1816

1817
1818
1819
1820

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these functions.

The atomic_signal_fence() and atomic_thread_fence() functions provide synchronization
primitives called fences. Fences can have acquire semantics, release semantics, or both. A
fence with acquire semantics is called an acquire fence; a fence with release semantics is
called a release fence.

A release fence A synchronizes with an acquire fence B if there exist atomic operations X
and Y, both operating on some atomic object M, such that A is sequenced before X, X
modifies M, Y is sequenced before B, and Y reads the value written by X or a value written
by any side effect in the hypothetical release sequence X would head if it were a release
operation.

A release fence A synchronizes with an atomic operation B that performs an acquire
operation on an atomic object M if there exists an atomic operation X such that A is
sequenced before X, X modifies M, and B reads the value written by X or a value written by
any side effect in the hypothetical release sequence X would head if it were a release
operation.

An atomic operation A that is a release operation on an atomic object M synchronizes with
an acquire fence B if there exists some atomic operation X on M such that X is sequenced
before B and reads the value written by A or a value written by any side effect in the release
sequence headed by A.

Depending on the value of order, the operation performed by atomic_thread_fence() shall:

• have no effects, if order is equal to memory_order_relaxed;

• be an acquire fence, if order is equal to memory_order_acquire or
memory_order_consume;

• be a release fence, if order is equal to memory_order_release;

• be both an acquire fence and a release fence, if order is equal to
memory_order_acq_rel;

• be a sequentially consistent acquire and release fence, if order is equal to
memory_order_seq_cst.

The atomic_signal_fence() function shall be equivalent to atomic_thread_fence(), except
that the resulting ordering constraints shall be established only between a thread and a signal
handler executed in the same thread.

RETURN VALUE
These functions shall not return a value.

1821
1822
1823
1824

1825
1826

1827
1828
1829
1830

1831
1832
1833
1834
1835

1836
1837
1838
1839
1840

1841
1842
1843
1844

1845

1846

1847
1848

1849

1850
1851

1852
1853

1854
1855
1856

1857
1858

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atomic_signal_fence() function can be used to specify the order in which actions
performed by the thread become visible to the signal handler. Implementation reorderings of
loads and stores are inhibited in the same way as with atomic_thread_fence(), but the
hardware fence instructions that atomic_thread_fence() would have inserted are not
emitted.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.12.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
atomic_store, atomic_store_explicit — atomically store a value in an object

SYNOPSIS
#include <stdatomic.h>
void atomic_store(volatile A *object, C desired);
void atomic_store_explicit(volatile A *object, C desired,

memory_order order);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support these generic functions.

The atomic_store_explicit() generic function shall atomically replace the value pointed to by
object with the value of desired. Memory shall be affected according to the value of order,
which the application shall ensure is not memory_order_acquire,
memory_order_consume, nor memory_order_acq_rel.

The atomic_store() generic function shall be equivalent to atomic_store_explicit() called
with order set to memory_order_seq_cst.

RETURN VALUE

1859
1860

1861
1862

1863
1864
1865
1866
1867
1868

1869
1870

1871
1872

1873
1874

1875
1876

1877
1878

1879
1880
1881
1882
1883

1884
1885
1886
1887

1888
1889

1890
1891
1892
1893

1894
1895

1896

These generic functions shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.12.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.28.1, 7.1.4 para 5
On page 633 line 21891 insert a new c16rtomb() section:

NAME
c16rtomb, c32rtomb — convert a Unicode character code to a character (restartable)

SYNOPSIS
#include <uchar.h>

size_t c16rtomb(char *restrict s, char16_t c16,
mbstate_t *restrict ps);

size_t c32rtomb(char *restrict s, char32_t c32,
mbstate_t *restrict ps);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

If s is a null pointer, the c16rtomb() function shall be equivalent to the call:

c16rtomb(buf, L'\0', ps)

where buf is an internal buffer.

If s is not a null pointer, the c16rtomb() function shall determine the number of bytes needed
to represent the character that corresponds to the wide character given by c16 (including any
shift sequences), and store the resulting bytes in the array whose first element is pointed to
by s. At most {MB_CUR_MAX} bytes shall be stored. If c16 is a null wide character, a null
byte shall be stored, preceded by any shift sequence needed to restore the initial shift state;

1897

1898
1899

1900
1901

1902
1903

1904
1905

1906
1907

1908
1909

1910
1911

1912
1913

1914
1915

1916
1917

1918
1919
1920
1921

1922
1923
1924
1925

1926

1927

1928

1929
1930
1931
1932
1933

the resulting state described shall be the initial conversion state.

If ps is a null pointer, the c16rtomb() function shall use its own internal mbstate_t object,
which shall be initialized at program start-up to the initial conversion state. Otherwise, the
mbstate_t object pointed to by ps shall be used to completely describe the current
conversion state of the associated character sequence.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

The mbrtoc16() function shall not change the setting of errno if successful.

The c32rtomb() function shall behave the same way as c16rtomb() except that the second
parameter shall be an object of type char32_t instead of char16_t. References to c16 in the
above description shall apply as if they were c32 when they are being read as describing
c32rtomb().

If called with a null ps argument, the c16rtomb() function need not be thread-safe; however,
such calls shall avoid data races with calls to c16rtomb() with a non-null argument and with
calls to all other functions.

If called with a null ps argument, the c32rtomb() function need not be thread-safe; however,
such calls shall avoid data races with calls to c32rtomb() with a non-null argument and with
calls to all other functions.

The implementation shall behave as if no function defined in this volume of POSIX.1-20xx
calls c16rtomb() or c32rtomb() with a null pointer for ps.

RETURN VALUE
These functions shall return the number of bytes stored in the array object (including any
shift sequences). When c16 or c32 is not a valid wide character, an encoding error shall
occur. In this case, the function shall store the value of the macro [EILSEQ] in errno and
shall return (size_t)-1; the conversion state is unspecified.

ERRORS
These function shall fail if:

[EILSEQ] An invalid wide-character code is detected.

These functions may fail if:

[CX][EINVAL] ps points to an object that contains an invalid conversion state.[/CX]

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

1934

1935
1936
1937
1938

1939

1940

1941
1942
1943
1944

1945
1946
1947

1948
1949
1950

1951
1952

1953
1954
1955
1956
1957

1958
1959

1960

1961

1962

1963
1964

1965
1966

1967
1968

1969
1970

SEE ALSO
mbrtoc16

XBD <uchar.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref G.6 para 6, F.10.4.3, F.10.4.2, F.10 para 11
On page 633 line 21905 section cabs(), add:

[MXC]cabs(x + iy), cabs(y + ix), and cabs(x − iy) shall return exactly the same value.

If z is ±0 ± i0, +0 shall be returned.

If the real or imaginary part of z is ±Inf, +Inf shall be returned, even if the other part is NaN.

If the real or imaginary part of z is NaN and the other part is not ±Inf, NaN shall be returned.
[/MXC]

Ref G.6.1.1
On page 634 line 21935 section cacos(), add:

[MXC]cacos(conj(z)), cacosf(conjf(z)) and cacosl(conjl(z)) shall return exactly the same
value as conj(cacos(z)), conjf(cacosf(z)) and conjl(cacosl(z)), respectively, including for the
special values of z below.

If z is ±0 + i0, π/2 − i0 shall be returned.

If z is ±0 + iNaN, π/2 + iNaN shall be returned.

If z is x + iInf where x is finite, π/2 − iInf shall be returned.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is −Inf + iy where y is positive-signed and finite, π − iInf shall be returned.

If z is +Inf + iy where y is positive-signed and finite, +0 − iInf shall be returned.

If z is −Inf + iInf, 3π/4 − iInf shall be returned.

If z is +Inf + iInf, π/4 − iInf shall be returned.

If z is ±Inf + iNaN, NaN ± iInf shall be returned; the sign of the imaginary part of the result
is unspecified.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-
point exception may be raised.

If z is NaN + iInf, NaN − iInf shall be returned.

1971
1972

1973

1974
1975

1976
1977

1978

1979

1980

1981
1982

1983
1984

1985
1986
1987

1988

1989

1990

1991
1992

1993

1994

1995

1996

1997
1998

1999
2000

2001

If z is NaN + iNaN, NaN − iNaN shall be returned.[/MXC]

Ref G.6.2.1
On page 635 line 21966 section cacosh(), add:

[MXC]cacosh(conj(z)), cacoshf(conjf(z)) and cacoshl(conjl(z)) shall return exactly the same
value as conj(cacosh(z)), conjf(cacoshf(z)) and conjl(cacoshl(z)), respectively, including for
the special values of z below.

If z is ±0 + i0, +0 +iπ/2 shall be returned.

If z is x + iInf where x is finite, +Inf +iπ/2 shall be returned.

If z is 0 + iNaN, NaN ± iπ/2 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is −Inf + iy where y is positive-signed and finite, +Inf +iπ shall be returned.

If z is +Inf + iy where y is positive-signed and finite, +Inf + i0 shall be returned.

If z is −Inf + iInf, +Inf + i3π/4 shall be returned.

If z is +Inf + iInf, +Inf + iπ/4 shall be returned.

If z is ±Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-
point exception may be raised.

If z is NaN + iInf, +Inf + iNaN shall be returned.

If z is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

Ref 7.26.2.1
On page 637 line 21989 insert the following new call_once() section:

NAME
call_once — dynamic package initialization

SYNOPSIS
#include <threads.h>

void call_once(once_flag *flag, void (*init_routine)(void));
once_flag flag = ONCE_FLAG_INIT;

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

2002

2003
2004

2005
2006
2007

2008

2009

2010
2011

2012
2013

2014

2015

2016

2017

2018

2019
2020

2021

2022

2023
2024

2025
2026

2027
2028

2029
2030

2031
2032
2033
2034

The call_once() function shall use the once_flag pointed to by flag to ensure that
init_routine is called exactly once, the first time the call_once() function is called with that
value of flag. Completion of an effective call to the call_once() function shall synchronize
with all subsequent calls to the call_once() function with the same value of flag.

[CX]The call_once() function is not a cancellation point. However, if init_routine is a
cancellation point and is canceled, the effect on flag shall be as if call_once() was never
called.

If the call to init_routine is terminated by a call to longjmp() or siglongjmp(), the behavior is
undefined.

The behavior of call_once() is undefined if flag has automatic storage duration or is not
initialized by ONCE_FLAG_INIT.

The call_once() function shall not be affected if the calling thread executes a signal handler
during the call.[/CX]

RETURN VALUE
The call_once() function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If init_routine recursively calls call_once() with the same flag, the recursive call will not call
the specified init_routine, and thus the specified init_routine will not complete, and thus the
recursive call to call_once() will not return. Use of longjmp() or siglongjmp() within an
init_routine to jump to a point outside of init_routine prevents init_routine from returning.

RATIONALE
For dynamic library initialization in a multi-threaded process, if an initialization flag is used
the flag needs to be protected against modification by multiple threads simultaneously
calling into the library. This can be done by using a statically-initialized mutex. However,
the better solution is to use call_once() or pthread_once() which are designed for exactly
this purpose, for example:

#include <threads.h>
static once_flag random_is_initialized = ONCE_FLAG_INIT;
extern void initialize_random(void);

int random_function()
{
 call_once(&random_is_initialized, initialize_random);
 ...
 /* Operations performed after initialization. */
}

2035
2036
2037
2038

2039
2040
2041

2042
2043

2044
2045

2046
2047

2048
2049

2050
2051

2052
2053

2054
2055
2056
2057
2058

2059
2060
2061
2062
2063
2064

2065
2066
2067

2068
2069
2070
2071
2072
2073

The call_once() function is not affected by signal handlers for the reasons stated in [xref to
XRAT B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_once

XBD Section 4.12.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.22.3 para 1
On page 637 line 22002 section calloc(), change:

a pointer to any type of object

to:

a pointer to any type of object with a fundamental alignment requirement

Ref 7.22.3 para 1
On page 637 line 22007 section calloc(), change:

either a null pointer shall be returned, or …

to:

either a null pointer shall be returned to indicate an error, or …

Ref 7.22.3 para 2
On page 637 line 22008 section calloc(), add a new paragraph:

For purposes of determining the existence of a data race, calloc() shall behave as though it
accessed only memory locations accessible through its arguments and not other static
duration storage. The function may, however, visibly modify the storage that it allocates.
Calls to aligned_alloc(), calloc(), free(), malloc(), [ADV]posix_memalign(),[/ADV] and
realloc() that allocate or deallocate a particular region of memory shall occur in a single total
order (see [xref to XBD 4.12.1]), and each such deallocation call shall synchronize with the
next allocation (if any) in this order.

Ref 7.22.3.1
On page 637 line 22029 section calloc(), add aligned_alloc to the SEE ALSO section.

Ref G.6 para 6, F.10.1.4, F.10 para 11
On page 639 line 22055 section carg(), add:

[MXC]If z is −0 ± i0, ±π shall be returned.

2074
2075

2076
2077

2078
2079

2080

2081
2082

2083
2084

2085

2086

2087

2088
2089

2090

2091

2092

2093
2094

2095
2096
2097
2098
2099
2100
2101

2102
2103

2104
2105

2106

If z is +0 ± i0, ±0 shall be returned.

If z is x ± i0 where x is negative, ±π shall be returned.

If z is x ± i0 where x is positive, ±0 shall be returned.

If z is ±0 + iy where y is negative, −π/2 shall be returned.

If z is ±0 + iy where y is positive, π/2 shall be returned.

If z is −Inf ± iy where y is positive and finite, ±π shall be returned.

If z is +Inf ± iy where y is positive and finite, ±0 shall be returned.

If z is x ± iInf where x is finite, ±π/2 shall be returned.

If z is −Inf ± iInf, ±3π/4 shall be returned.

If z is +Inf ± iInf, ±π/4 shall be returned.

If the real or imaginary part of z is NaN, NaN shall be returned.[/MXC]

Ref G.6 para 7, G.6.2.2
On page 640 line 22086 section casin(), add:

[MXC]casin(conj(iz)), casinf(conjf(iz)) and casinl(conjl(iz)) shall return exactly the same
value as conj(casin(iz)), conjf(casinf(iz)) and conjl(casinl(iz)), respectively, and casin(−iz),
casinf(−iz) and casinl(−iz) shall return exactly the same value as −casin(iz), −casinf(iz) and
−casinl(iz), respectively, including for the special values of iz below.

If iz is +0 + i0, −i (0 + i0) shall be returned.

If iz is x + iInf where x is positive-signed and finite, −i (+Inf + iπ/2) shall be returned.

If iz is x + iNaN where x is finite, −i (NaN + iNaN) shall be returned and the invalid
floating-point exception may be raised.

If iz is +Inf + iy where y is positive-signed and finite, −i (+Inf + i0) shall be returned.

If iz is +Inf + iInf, −i (+Inf + iπ/4) shall be returned.

If iz is +Inf + iNaN, −i (+Inf + iNaN) shall be returned.

If iz is NaN + i0, −i (NaN + i0) shall be returned.

If iz is NaN + iy where y is non-zero and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is NaN + iInf, −i (±Inf + iNaN) shall be returned; the sign of the imaginary part of the
result is unspecified.

If iz is NaN + iNaN, −i (NaN + iNaN) shall be returned.[/MXC]

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118
2119

2120
2121
2122
2123

2124

2125

2126
2127

2128

2129

2130

2131

2132
2133

2134
2135

2136

Ref G.6 para 7
On page 640 line 22094 section casin(), change RATIONALE from:

None.

to:

The MXC special cases for casin() are derived from those for casinh() by applying the
formula casin(z) = −i casinh(iz).

Ref G.6.2.2
On page 641 line 22118 section casinh(), add:

[MXC]casinh(conj(z)), casinhf(conjf(z)) and casinhl(conjl(z)) shall return exactly the same
value as conj(casinh(z)), conjf(casinhf(z)) and conjl(casinhl(z)), respectively, and casinh(−z),
casinhf(−z) and casinhl(−z) shall return exactly the same value as −casinh(z), −casinhf(z)
and −casinhl(z), respectively, including for the special values of z below.

If z is +0 + i0, 0 + i0 shall be returned.

If z is x + iInf where x is positive-signed and finite, +Inf + iπ/2 shall be returned.

If z is x + iNaN where x is finite, NaN + iNaN shall be returned and the invalid floating-
point exception may be raised.

If z is +Inf + iy where y is positive-signed and finite, +Inf + i0 shall be returned.

If z is +Inf + iInf, +Inf + iπ/4 shall be returned.

If z is +Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + i0, NaN + i0 shall be returned.

If z is NaN + iy where y is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is NaN + iInf, ±Inf + iNaN shall be returned; the sign of the real part of the result is
unspecified.

If z is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

Ref G.6 para 7, G.6.2.3
On page 643 line 22157 section catan, add:

[MXC]catan(conj(iz)), catanf(conjf(iz)) and catanl(conjl(iz)) shall return exactly the same
value as conj(catan(iz)), conjf(catanf(iz)) and conjl(catanl(iz)), respectively, and catan(−iz),
catanf(−iz) and catanl(−iz) shall return exactly the same value as −catan(iz), −catanf(iz) and
−catanl(iz), respectively, including for the special values of iz below.

If iz is +0 + i0, −i (+0 + i0) shall be returned.

2137
2138

2139

2140

2141
2142

2143
2144

2145
2146
2147
2148

2149

2150

2151
2152

2153

2154

2155

2156

2157
2158

2159
2160

2161

2162
2163

2164
2165
2166
2167

2168

If iz is +0 + iNaN, −i (+0 + iNaN) shall be returned.

If iz is +1 + i0, −i (+Inf + i0) shall be returned and the divide-by-zero floating-point
exception shall be raised.

If iz is x + iInf where x is positive-signed and finite, −i (+0 + iπ/2) shall be returned.

If iz is x + iNaN where x is non-zero and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is +Inf + iy where y is positive-signed and finite, −i (+0 + iπ/2) shall be returned.

If iz is +Inf + iInf, −i (+0 + iπ/2) shall be returned.

If iz is +Inf + iNaN, −i (+0 + iNaN) shall be returned.

If iz is NaN + iy where y is finite, −i (NaN + iNaN) shall be returned and the invalid
floating-point exception may be raised.

If iz is NaN + iInf, −i (±0 + iπ/2) shall be returned; the sign of the imaginary part of the
result is unspecified.

If iz is NaN + iNaN, −i (NaN + iNaN) shall be returned.[/MXC]

Ref G.6 para 7
On page 643 line 22165 section catan(), change RATIONALE from:

None.

to:

The MXC special cases for catan() are derived from those for catanh() by applying the
formula catan(z) = −i catanh(iz).

Ref G.6.2.3
On page 644 line 22189 section catanh, add:

[MXC]catanh(conj(z)), catanhf(conjf(z)) and catanhl(conjl(z)) shall return exactly the same
value as conj(catanh(z)), conjf(catanhf(z)) and conjl(catanhl(z)), respectively, and
catanh(−z), catanhf(−z) and catanhl(−z) shall return exactly the same value as −catanh(z),
−catanhf(z) and −catanhl(z), respectively, including for the special values of z below.

If z is +0 + i0, +0 + i0 shall be returned.

If z is +0 + iNaN, +0 + iNaN shall be returned.

If z is +1 + i0, +Inf + i0 shall be returned and the divide-by-zero floating-point exception
shall be raised.

If z is x + iInf where x is positive-signed and finite, +0 + iπ/2 shall be returned.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid

2169

2170
2171

2172

2173
2174

2175

2176

2177

2178
2179

2180
2181

2182

2183
2184

2185

2186

2187
2188

2189
2190

2191
2192
2193
2194

2195

2196

2197
2198

2199

2200

floating-point exception may be raised.

If z is +Inf + iy where y is positive-signed and finite, +0 + iπ/2 shall be returned.

If z is +Inf + iInf, +0 + iπ/2 shall be returned.

If z is +Inf + iNaN, +0 + iNaN shall be returned.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-
point exception may be raised.

If z is NaN + iInf, ±0 + iπ/2 shall be returned; the sign of the real part of the result is
unspecified.

If z is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

Ref G.6 para 7, G.6.2.4
On page 652 line 22426 section ccos(), add:

[MXC]ccos(conj(iz)), ccosf(conjf(iz)) and ccosl(conjl(iz)) shall return exactly the same value
as conj(ccos(iz)), conjf(ccosf(iz)) and conjl(ccosl(iz)), respectively, and ccos(−iz), ccosf(−iz)
and ccosl(−iz) shall return exactly the same value as ccos(iz), ccosf(iz) and ccosl(iz),
respectively, including for the special values of iz below.

If iz is +0 + i0, 1 + i0 shall be returned.

If iz is +0 + iInf, NaN ± i0 shall be returned and the invalid floating-point exception shall be
raised; the sign of the imaginary part of the result is unspecified.

If iz is +0 + iNaN, NaN ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If iz is x + iInf where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception shall be raised.

If iz is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the
invalid floating-point exception may be raised.

If iz is +Inf + i0, +Inf + i0 shall be returned.

If iz is +Inf + iy where y is non-zero and finite, +Inf (cos(y) + isin(y)) shall be returned.

If iz is +Inf + iInf, ±Inf + iNaN shall be returned and the invalid floating-point exception
shall be raised; the sign of the real part of the result is unspecified.

If iz is +Inf + iNaN, +Inf + iNaN shall be returned.

If iz is NaN + i0, NaN ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If iz is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the
invalid floating-point exception may be raised.

2201

2202

2203

2204

2205
2206

2207
2208

2209

2210
2211

2212
2213
2214
2215

2216

2217
2218

2219
2220

2221
2222

2223
2224

2225

2226

2227
2228

2229

2230
2231

2232
2233

If iz is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

Ref G.6 para 7
On page 652 line 22434 section ccos(), change RATIONALE from:

None.

to:

The MXC special cases for ccos() are derived from those for ccosh() by applying the
formula ccos(z) = ccosh(iz).

Ref G.6.2.4
On page 653 line 22455 section ccosh(), add:

[MXC]ccosh(conj(z)), ccoshf(conjf(z)) and ccoshl(conjl(z)) shall return exactly the same
value as conj(ccosh(z)), conjf(ccoshf(z)) and conjl(ccoshl(z)), respectively, and ccosh(−z),
ccoshf(−z) and ccoshl(−z) shall return exactly the same value as ccosh(z), ccoshf(z) and
ccoshl(z), respectively, including for the special values of z below.

If z is +0 + i0, 1 + i0 shall be returned.

If z is +0 + iInf, NaN ± i0 shall be returned and the invalid floating-point exception shall be
raised; the sign of the imaginary part of the result is unspecified.

If z is +0 + iNaN, NaN ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is x + iInf where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception shall be raised.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is +Inf + i0, +Inf + i0 shall be returned.

If z is +Inf + iy where y is non-zero and finite, +Inf (cos(y) + isin(y)) shall be returned.

If z is +Inf + iInf, ±Inf + iNaN shall be returned and the invalid floating-point exception
shall be raised; the sign of the real part of the result is unspecified.

If z is +Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + i0, NaN ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the
invalid floating-point exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

2234

2235
2236

2237

2238

2239
2240

2241
2242

2243
2244
2245
2246

2247

2248
2249

2250
2251

2252
2253

2254
2255

2256

2257

2258
2259

2260

2261
2262

2263
2264

2265

Ref F.10.6.1 para 4
On page 655 line 22489 section ceil(), add a new paragraph:

[MX]These functions may raise the inexact floating-point exception for finite non-integer
arguments.[/MX]

Ref F.10.6.1 para 2
On page 655 line 22491 section ceil(), change:

[MX]The result shall have the same sign as x.[/MX]

to:

[MX]The returned value shall be independent of the current rounding direction mode and
shall have the same sign as x.[/MX]

Ref F.10.6.1 para 4
On page 655 line 22504 section ceil(), delete from APPLICATION USAGE:

These functions may raise the inexact floating-point exception if the result differs in value
from the argument.

Ref G.6.3.1
On page 657 line 22539 section cexp(), add:

[MXC]cexp(conj(z)), cexpf(conjf(z)) and cexpl(conjl(z)) shall return exactly the same value
as conj(cexp(z)), conjf(cexpf(z)) and conjl(cexpl(z)), respectively, including for the special
values of z below.

If z is ±0 + i0, 1 + i0 shall be returned.

If z is x + iInf where x is finite, NaN + iNaN shall be returned and the invalid floating-point
exception shall be raised.

If z is x + iNaN where x is finite, NaN + iNaN shall be returned and the invalid floating-
point exception may be raised.

If z is +Inf + i0, +Inf + i0 shall be returned.

If z is −Inf + iy where y is finite, +0 (cos(y) + isin(y)) shall be returned.

If z is +Inf + iy where y is non-zero and finite, +Inf (cos(y) + isin(y)) shall be returned.

If z is −Inf + iInf, ±0 ± i0 shall be returned; the signs of the real and imaginary parts of the
result are unspecified.

If z is +Inf + iInf, ±Inf + iNaN shall be returned and the invalid floating-point exception
shall be raised; the sign of the real part of the result is unspecified.

If z is −Inf + iNaN, ±0 ± i0 shall be returned; the signs of the real and imaginary parts of the
result are unspecified.

2266
2267

2268
2269

2270
2271

2272

2273

2274
2275

2276
2277

2278
2279

2280
2281

2282
2283
2284

2285

2286
2287

2288
2289

2290

2291

2292

2293
2294

2295
2296

2297
2298

If z is +Inf + iNaN, ±Inf + iNaN shall be returned; the sign of the real part of the result is
unspecified.

If z is NaN + i0, NaN + i0 shall be returned.

If z is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the
invalid floating-point exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

Ref 7.26.5.7
On page 679 line 23268 section clock_getres(), change:

including the nanosleep() function

to:

including the nanosleep() and thrd_sleep() functions

Ref G.6.3.2
On page 687 line 23495 section clog(), add:

[MXC]clog(conj(z)), clogf(conjf(z)) and clogl(conjl(z)) shall return exactly the same value as
conj(clog(z)), conjf(clogf(z)) and conjl(clogl(z)), respectively, including for the special
values of z below.

If z is −0 + i0, −Inf + iπ shall be returned and the divide-by-zero floating-point exception
shall be raised.

If z is +0 + i0, −Inf + i0 shall be returned and the divide-by-zero floating-point exception
shall be raised.

If z is x + iInf where x is finite, +Inf + iπ/2 shall be returned.

If z is x + iNaN where x is finite, NaN + iNaN shall be returned and the invalid floating-
point exception may be raised.

If z is −Inf + iy where y is positive-signed and finite, +Inf + iπ shall be returned.

If z is +Inf + iy where y is positive-signed and finite, +Inf + i0 shall be returned.

If z is −Inf + iInf, +Inf + i3π/4 shall be returned.

If z is +Inf + iInf, +Inf + iπ/4 shall be returned.

If z is ±Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-
point exception may be raised.

If z is NaN + iInf, +Inf + iNaN shall be returned.

2299
2300

2301

2302
2303

2304

2305
2306

2307

2308

2309

2310
2311

2312
2313
2314

2315
2316

2317
2318

2319

2320
2321

2322

2323

2324

2325

2326

2327
2328

2329

If z is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

Ref 7.26.3
On page 698 line 23854 insert the following new cnd_*() sections:

Note to reviewers: changes to cnd_broadcast and cnd_signal may be needed depending on the
outcome of Mantis bug 609.

NAME
cnd_broadcast, cnd_signal — broadcast or signal a condition

SYNOPSIS
#include <threads.h>

int cnd_broadcast(cnd_t *cond);
int cnd_signal(cnd_t *cond);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The cnd_broadcast() function shall unblock all of the threads that are blocked on the
condition variable pointed to by cond at the time of the call.

The cnd_signal() function shall unblock one of the threads that are blocked on the condition
variable pointed to by cond at the time of the call (if any threads are blocked on cond).

If no threads are blocked on the condition variable pointed to by cond at the time of the call,
these functions shall have no effect and shall return thrd_success.

[CX]If more than one thread is blocked on a condition variable, the scheduling policy shall
determine the order in which threads are unblocked. When each thread unblocked as a result
of a cnd_broadcast() or cnd_signal() returns from its call to cnd_wait() or cnd_timedwait(),
the thread shall own the mutex with which it called cnd_wait() or cnd_timedwait(). The
thread(s) that are unblocked shall contend for the mutex according to the scheduling policy
(if applicable), and as if each had called mtx_lock().

The cnd_broadcast() and cnd_signal() functions can be called by a thread whether or not it
currently owns the mutex that threads calling cnd_wait() or cnd_timedwait() have associated
with the condition variable during their waits; however, if predictable scheduling behavior is
required, then that mutex shall be locked by the thread calling cnd_broadcast() or
cnd_signal().

These functions shall not be affected if the calling thread executes a signal handler during
the call.[/CX]

The behavior is undefined if the value specified by the cond argument to cnd_broadcast() or
cnd_signal() does not refer to an initialized condition variable.

RETURN VALUE
These functions shall return thrd_success on success, or thrd_error if the request
could not be honored.

2330

2331
2332

2333
2334

2335
2336

2337
2338

2339
2340

2341
2342
2343
2344

2345
2346

2347
2348

2349
2350

2351
2352
2353
2354
2355
2356

2357
2358
2359
2360
2361

2362
2363

2364
2365

2366
2367
2368

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
See the APPLICATION USAGE section for pthread_cond_broadcast(), substituting
cnd_broadcast() for pthread_cond_broadcast() and cnd_signal() for pthread_cond_signal().

RATIONALE
As for pthread_cond_broadcast() and pthread_cond_signal(), spurious wakeups may occur
with cnd_broadcast() and cnd_signal(), necessitating that applications code a predicate-
testing-loop around the condition wait. (See the RATIONALE section for
pthread_cond_broadcast().)

These functions are not affected by signal handlers for the reasons stated in [xref to XRAT
B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
cnd_destroy, cnd_timedwait, pthread_cond_broadcast

XBD Section 4.12.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
cnd_destroy, cnd_init — destroy and initialize condition variables

SYNOPSIS
#include <threads.h>

void cnd_destroy(cnd_t *cond);
int cnd_init(cnd_t *cond);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The cnd_destroy() function shall release all resources used by the condition variable pointed
to by cond. It shall be safe to destroy an initialized condition variable upon which no threads
are currently blocked. Attempting to destroy a condition variable upon which other threads
are currently blocked results in undefined behavior. A destroyed condition variable object
can be reinitialized using cnd_init(); the results of otherwise referencing the object after it
has been destroyed are undefined. The behavior is undefined if the value specified by the
cond argument to cnd_destroy() does not refer to an initialized condition variable.

2369
2370

2371
2372

2373
2374
2375

2376
2377
2378
2379
2380

2381
2382

2383
2384

2385
2386

2387

2388
2389

2390
2391

2392
2393

2394
2395

2396
2397
2398
2399

2400
2401
2402
2403
2404
2405
2406

The cnd_init() function shall initialize a condition variable. If it succeeds it shall set the
variable pointed to by cond to a value that uniquely identifies the newly initialized condition
variable. Attempting to initialize an already initialized condition variable results in
undefined behavior. A thread that calls cnd_wait() on a newly initialized condition variable
shall block.

[CX]See [xref to XSH 2.9.9 Synchronization Object Copies and Alternative Mappings] for
further requirements.

These functions shall not be affected if the calling thread executes a signal handler during
the call.[/CX]

RETURN VALUE
The cnd_destroy() function shall not return a value.

The cnd_init() function shall return thrd_success on success, or thrd_nomem if no
memory could be allocated for the newly created condition, or thrd_error if the request
could not be honored.

ERRORS
See RETURN VALUE.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
These functions are not affected by signal handlers for the reasons stated in [xref to XRAT
B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
cnd_broadcast, cnd_timedwait

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
cnd_timedwait, cnd_wait — wait on a condition

SYNOPSIS
#include <threads.h>
int cnd_timedwait(cnd_t * restrict cond, mtx_t * restrict mtx,

const struct timespec * restrict ts);
int cnd_wait(cnd_t *cond, mtx_t *mtx);

2407
2408
2409
2410
2411

2412
2413

2414
2415

2416
2417

2418
2419
2420

2421
2422

2423
2424

2425
2426

2427
2428
2429

2430
2431

2432
2433

2434

2435
2436

2437
2438

2439
2440
2441
2442
2443

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The cnd_timedwait() function shall atomically unlock the mutex pointed to by mtx and block
until the condition variable pointed to by cond is signaled by a call to cnd_signal() or to
cnd_broadcast(), or until after the TIME_UTC-based calendar time pointed to by ts, or until
it is unblocked due to an unspecified reason.

The cnd_wait() function shall atomically unlock the mutex pointed to by mtx and block until
the condition variable pointed to by cond is signaled by a call to cnd_signal() or to
cnd_broadcast(), or until it is unblocked due to an unspecified reason.

[CX]Atomically here means "atomically with respect to access by another thread to the
mutex and then the condition variable". That is, if another thread is able to acquire the mutex
after the about-to-block thread has released it, then a subsequent call to cnd_broadcast() or
cnd_signal() in that thread shall behave as if it were issued after the about-to-block thread
has blocked.[/CX]

When the calling thread becomes unblocked, these functions shall lock the mutex pointed to
by mtx before they return. The application shall ensure that the mutex pointed to by mtx is
locked by the calling thread before it calls these functions.

When using condition variables there is always a Boolean predicate involving shared
variables associated with each condition wait that is true if the thread should proceed.
Spurious wakeups from the cnd_timedwait() and cnd_wait() functions may occur. Since the
return from cnd_timedwait() or cnd_wait() does not imply anything about the value of this
predicate, the predicate should be re-evaluated upon such return.

When a thread waits on a condition variable, having specified a particular mutex to either
the cnd_timedwait() or the cnd_wait() operation, a dynamic binding is formed between that
mutex and condition variable that remains in effect as long as at least one thread is blocked
on the condition variable. During this time, the effect of an attempt by any thread to wait on
that condition variable using a different mutex is undefined. Once all waiting threads have
been unblocked (as by the cnd_broadcast() operation), the next wait operation on
that condition variable shall form a new dynamic binding with the mutex specified by that
wait operation. Even though the dynamic binding between condition variable and mutex
might be removed or replaced between the time a thread is unblocked from a wait on the
condition variable and the time that it returns to the caller or begins cancellation cleanup, the
unblocked thread shall always re-acquire the mutex specified in the condition wait operation
call from which it is returning.

[CX]A condition wait (whether timed or not) is a cancellation point. When the cancelability
type of a thread is set to PTHREAD_CANCEL_DEFERRED, a side-effect of acting upon a
cancellation request while in a condition wait is that the mutex is (in effect) re-acquired
before calling the first cancellation cleanup handler. The effect is as if the thread were
unblocked, allowed to execute up to the point of returning from the call to cnd_timedwait()
or cnd_wait(), but at that point notices the cancellation request and instead of returning to
the caller of cnd_timedwait() or cnd_wait(), starts the thread cancellation activities, which
includes calling cancellation cleanup handlers.

2444
2445
2446
2447

2448
2449
2450
2451

2452
2453
2454

2455
2456
2457
2458
2459

2460
2461
2462

2463
2464
2465
2466
2467

2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479

2480
2481
2482
2483
2484
2485
2486
2487

A thread that has been unblocked because it has been canceled while blocked in a call to
cnd_timedwait() or cnd_wait() shall not consume any condition signal that may be directed
concurrently at the condition variable if there are other threads blocked on the condition
variable.[/CX]

When cnd_timedwait() times out, it shall nonetheless release and re-acquire the mutex
referenced by mutex, and may consume a condition signal directed concurrently at the
condition variable.

[CX]These functions shall not be affected if the calling thread executes a signal handler
during the call, except that if a signal is delivered to a thread waiting for a condition
variable, upon return from the signal handler either the thread shall resume waiting for the
condition variable as if it was not interrupted, or it shall return thrd_success due to
spurious wakeup.[/CX]

The behavior is undefined if the value specified by the cond or mtx argument to these
functions does not refer to an initialized condition variable or an initialized mutex object,
respectively.

RETURN VALUE
The cnd_timedwait() function shall return thrd_success upon success, or
thrd_timedout if the time specified in the call was reached without acquiring the
requested resource, or thrd_error if the request could not be honored.

The cnd_wait() function shall return thrd_success upon success or thrd_error if the
request could not be honored.

ERRORS
See RETURN VALUE.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
These functions are not affected by signal handlers (except as stated in the DESCRIPTION)
for the reasons stated in [xref to XRAT B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
cnd_broadcast, cnd_destroy, timespec_get

XBD Section 4.12.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

2488
2489
2490
2491

2492
2493
2494

2495
2496
2497
2498
2499

2500
2501
2502

2503
2504
2505
2506

2507
2508

2509
2510

2511
2512

2513
2514

2515
2516
2517

2518
2519

2520
2521

2522

2523
2524

Ref F.10.8.1 para 2
On page 705 line 24155 section copysign(), add a new paragraph:

[MX]The returned value shall be exact and shall be independent of the current rounding
direction mode.[/MX]

Ref G.6.4.1 para 1
On page 711 line 24308 section cpow(), add a new paragraph:

[MXC]These functions shall raise floating-point exceptions if appropriate for the calculation
of the parts of the result, and may also raise spurious floating-point exceptions.[/MXC]

Ref G.6.4.1 footnote 386
On page 711 line 24318 section cpow(), change RATIONALE from:

None.

to:

Permitting spurious floating-point exceptions allows cpow(z, c) to be implemented as cexp(c
clog (z)) without precluding implementations that treat special cases more carefully.

Ref G.6 para 7, G.6.2.5
On page 718 line 24545 section csin(), add:

[MXC]csin(conj(iz)), csinf(conjf(iz)) and csinl(conjl(iz)) shall return exactly the same value
as conj(csin(iz)), conjf(csinf(iz)) and conjl(csinl(iz)), respectively, and csin(−iz), csinf(−iz)
and csinl(−iz) shall return exactly the same value as −csin(iz), −csinf(iz) and −csinl(iz),
respectively, including for the special values of iz below.

If iz is +0 + i0, −i (+0 + i0) shall be returned.

If iz is +0 + iInf, −i (±0 + iNaN) shall be returned and the invalid floating-point exception
shall be raised; the sign of the imaginary part of the result is unspecified.

If iz is +0 + iNaN, −i (±0 + iNaN) shall be returned; the sign of the imaginary part of the
result is unspecified.

If iz is x + iInf where x is positive and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception shall be raised.

If iz is x + iNaN where x is non-zero and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is +Inf + i0, −i (+Inf + i0) shall be returned.

If iz is +Inf + iy where y is positive and finite, −iInf (cos(y) + isin(y)) shall be returned.

If iz is +Inf + iInf, −i (±Inf + iNaN) shall be returned and the invalid floating-point exception
shall be raised; the sign of the imaginary part of the result is unspecified.

2525
2526

2527
2528

2529
2530

2531
2532

2533
2534

2535

2536

2537
2538

2539
2540

2541
2542
2543
2544

2545

2546
2547

2548
2549

2550
2551

2552
2553

2554

2555

2556
2557

If iz is +Inf + iNaN, −i (±Inf + iNaN) shall be returned; the sign of the imaginary part of the
result is unspecified.

If iz is NaN + i0, −i (NaN + i0) shall be returned.

If iz is NaN + iy where y is any non-zero number, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is NaN + iNaN, −i (NaN + iNaN) shall be returned.[/MXC]

Ref G.6 para 7
On page 718 line 24553 section csin(), change RATIONALE from:

None.

to:

The MXC special cases for csin() are derived from those for csinh() by applying the formula
csin(z) = −i csinh(iz).

Ref G.6.2.5
On page 719 line 24574 section csinh(), add:

[MXC]csinh(conj(z)), csinhf(conjf(z)) and csinhl(conjl(z)) shall return exactly the same
value as conj(csinh(z)), conjf(csinhf(z)) and conjl(csinhl(z)), respectively, and csinh(−z),
csinhf(−z) and csinhl(−z) shall return exactly the same value as −csinh(z), −csinhf(z) and
−csinhl(z), respectively, including for the special values of z below.

If z is +0 + i0, +0 + i0 shall be returned.

If z is +0 + iInf, ±0 + iNaN shall be returned and the invalid floating-point exception shall be
raised; the sign of the real part of the result is unspecified.

If z is +0 + iNaN, ±0 + iNaN shall be returned; the sign of the real part of the result is
unspecified.

If z is x + iInf where x is positive and finite, NaN + iNaN shall be returned and the invalid
floating-point exception shall be raised.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is +Inf + i0, +Inf + i0 shall be returned.

If z is +Inf + iy where y is positive and finite, +Inf (cos(y) + isin(y)) shall be returned.

If z is +Inf + iInf, ±Inf + iNaN shall be returned and the invalid floating-point exception
shall be raised; the sign of the real part of the result is unspecified.

If z is +Inf + iNaN, ±Inf + iNaN shall be returned; the sign of the real part of the result is
unspecified.

2558
2559

2560

2561
2562

2563

2564
2565

2566

2567

2568
2569

2570
2571

2572
2573
2574
2575

2576

2577
2578

2579
2580

2581
2582

2583
2584

2585

2586

2587
2588

2589
2590

If z is NaN + i0, NaN + i0 shall be returned.

If z is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the
invalid floating-point exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

Ref G.6.4.2
On page 721 line 24612 section csqrt(), add:

[MXC]csqrt(conj(z)), csqrtf(conjf(z)) and csqrtl(conjl(z)) shall return exactly the same value
as conj(csqrt(z)), conjf(csqrtf(z)) and conjl(csqrtl(z)), respectively, including for the special
values of z below.

If z is ±0 + i0, +0 + i0 shall be returned.

If the imaginary part of z is Inf, +Inf + iInf, shall be returned.

If z is x + iNaN where x is finite, NaN + iNaN shall be returned and the invalid floating-
point exception may be raised.

If z is −Inf + iy where y is positive-signed and finite, +0 + iInf shall be returned.

If z is +Inf + iy where y is positive-signed and finite, +Inf + i0 shall be returned.

If z is −Inf + iNaN, NaN ± iInf shall be returned; the sign of the imaginary part of the result
is unspecified.

If z is +Inf + iNaN, +Inf + iNaN shall be returned.

If z is NaN + iy where y is finite, NaN + iNaN shall be returned and the invalid floating-
point exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

Ref G.6 para 7, G.6.2.6
On page 722 line 24641 section ctan(), add:

[MXC]ctan(conj(iz)), ctanf(conjf(iz)) and ctanl(conjl(iz)) shall return exactly the same value
as conj(ctan(iz)), conjf(ctanf(iz)) and conjl(ctanl(iz)), respectively, and ctan(−iz), ctanf(−iz)
and ctanl(−iz) shall return exactly the same value as −ctan(iz), −ctanf(iz) and −ctanl(iz),
respectively, including for the special values of iz below.

If iz is +0 + i0, −i (+0 + i0) shall be returned.

If iz is 0 + iInf, −i (0 + iNaN) shall be returned and the invalid floating-point exception shall
be raised.

If iz is x + iInf where x is non-zero and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception shall be raised.

If iz is 0 + iNaN, −i (0 + iNaN) shall be returned.

2591

2592
2593

2594

2595
2596

2597
2598
2599

2600

2601

2602
2603

2604

2605

2606
2607

2608

2609
2610

2611

2612
2613

2614
2615
2616
2617

2618

2619
2620

2621
2622

2623

If iz is x + iNaN where x is non-zero and finite, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is +Inf + iy where y is positive-signed and finite, −i (1 + i0 sin(2y)) shall be returned.

If iz is +Inf + iInf, −i (1 ± i0) shall be returned; the sign of the real part of the result is
unspecified.

If iz is +Inf + iNaN, −i (1 ± i0) shall be returned; the sign of the real part of the result is
unspecified.

If iz is NaN + i0, −i (NaN + i0) shall be returned.

If iz is NaN + iy where y is any non-zero number, −i (NaN + iNaN) shall be returned and the
invalid floating-point exception may be raised.

If iz is NaN + iNaN, −i (NaN + iNaN) shall be returned.[/MXC]

Ref G.6 para 7
On page 722 line 24649 section ctan(), change RATIONALE from:

None.

to:

The MXC special cases for ctan() are derived from those for ctanh() by applying the
formula ctan(z) = −i ctanh(iz).

Ref G.6.2.6
On page 723 line 24670 section ctanh(), add:

[MXC]ctanh(conj(z)), ctanhf(conjf(z)) and ctanhl(conjl(z)) shall return exactly the same
value as conj(ctanh(z)), conjf(ctanhf(z)) and conjl(ctanhl(z)), respectively, and ctanh(−z),
ctanhf(−z) and ctanhl(−z) shall return exactly the same value as −ctanh(z), −ctanhf(z) and
−ctanhl(z), respectively, including for the special values of z below.

If z is +0 + i0, +0 + i0 shall be returned.

If z is 0 + iInf, 0 + iNaN shall be returned and the invalid floating-point exception shall be
raised.

If z is x + iInf where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception shall be raised.

If z is 0 + iNaN, 0 + iNaN shall be returned.

If z is x + iNaN where x is non-zero and finite, NaN + iNaN shall be returned and the invalid
floating-point exception may be raised.

If z is +Inf + iy where y is positive-signed and finite, 1 + i0 sin(2y) shall be returned.

2624
2625

2626

2627
2628

2629
2630

2631

2632
2633

2634

2635
2636

2637

2638

2639
2640

2641
2642

2643
2644
2645
2646

2647

2648
2649

2650
2651

2652

2653
2654

2655

If z is +Inf + iInf, 1 ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is +Inf + iNaN, 1 ± i0 shall be returned; the sign of the imaginary part of the result is
unspecified.

If z is NaN + i0, NaN + i0 shall be returned.

If z is NaN + iy where y is any non-zero number, NaN + iNaN shall be returned and the
invalid floating-point exception may be raised.

If z is NaN + iNaN, NaN + iNaN shall be returned.[/MXC]

Ref 7.27.3, 7.1.4 para 5
On page 727 line 24774 section ctime(), change:

[CX]The ctime() function need not be thread-safe.[/CX]

to:
The ctime() function need not be thread-safe; however, ctime() shall avoid data races with all
functions other than itself, asctime(), gmtime() and localtime().

Ref 7.5 para 2
On page 781 line 26447 section errno, change:

The lvalue errno is used by many functions to return error values.

to:

The lvalue to which the macro errno expands is used by many functions to return error
values.

Ref 7.5 para 3
On page 781 line 26449 section errno, change:

The value of errno shall be defined only after a call to a function for which it is explicitly
stated to be set and until it is changed by the next function call or if the application assigns it
a value.

to:

The value of errno in the initial thread shall be zero at program startup (the initial value of
errno in other threads is an indeterminate value) and shall otherwise be defined only after a
call to a function for which it is explicitly stated to be set and until it is changed by the next
function call or if the application assigns it a value.

Ref 7.5 para 2
On page 781 line 26456 section errno, delete:

It is unspecified whether errno is a macro or an identifier declared with external linkage.

Ref 7.22.4.4 para 2

2656
2657

2658
2659

2660

2661
2662

2663

2664
2665

2666

2667
2668
2669

2670
2671

2672

2673

2674
2675

2676
2677

2678
2679
2680

2681

2682
2683
2684
2685

2686
2687

2688

2689

On page 796 line 27057 section exit(), add a new (unshaded) paragraph:

The exit() function shall cause normal process termination to occur. No functions registered
by the at_quick_exit() function shall be called. If a process calls the exit() function more
than once, or calls the quick_exit() function in addition to the exit() function, the behavior is
undefined.

Ref 7.22.4.4 para 2
On page 796 line 27068 section exit(), delete:

If exit() is called more than once, the behavior is undefined.

Ref 7.22.4.3, 7.22.4.7
On page 796 line 27086 section exit(), add at_quick_exit and quick_exit to the SEE ALSO section.

Ref F.10.4.2 para 2
On page 804 line 27323 section fabs(), add a new paragraph:

[MX]The returned value shall be exact and shall be independent of the current rounding
direction mode.[/MX]

Ref 7.21.2 para 7,8
On page 874 line 29483 section flockfile(), change:

These functions shall provide for explicit application-level locking of stdio (FILE *)
objects.

to:

These functions shall provide for explicit application-level locking of the locks associated
with standard I/O streams (see [xref to 2.5]).

Ref 7.21.2 para 7,8
On page 874 line 29499 section flockfile(), delete:

All functions that reference (FILE *) objects, except those with names ending in _unlocked,
shall behave as if they use flockfile() and funlockfile() internally to obtain ownership of these
(FILE *) objects.

Ref F.10.6.2 para 3
On page 876 line 29560 section floor(), add a new paragraph:

[MX]These functions may raise the inexact floating-point exception for finite non-integer
arguments.[/MX]

Ref F.10.6.2 para 2
On page 876 line 29562 section floor(), change:

[MX]The result shall have the same sign as x.[/MX]

to:

2690

2691
2692
2693
2694

2695
2696

2697

2698
2699

2700
2701

2702
2703

2704
2705

2706
2707

2708

2709
2710

2711
2712

2713
2714
2715

2716
2717

2718
2719

2720
2721

2722

2723

[MX]The returned value shall be independent of the current rounding direction mode and
shall have the same sign as x.[/MX]

Ref F.10.6.2 para 3
On page 876 line 29576 section floor(), delete from APPLICATION USAGE:

These functions may raise the inexact floating-point exception if the result differs in value
from the argument.

Ref F.10.9.2 para 2
On page 880 line 29695 section fmax(), add a new paragraph:

[MX]The returned value shall be exact and shall be independent of the current rounding
direction mode.[/MX]

Ref F.10.9.3 para 2
On page 884 line 29844 section fmin(), add a new paragraph:

[MX]The returned value shall be exact and shall be independent of the current rounding
direction mode.[/MX]

Ref F.10.7.1 para 2
On page 885 line 29892 section fmod(), change:

[MXX]If the correct value would cause underflow, and is representable, a range error may
occur and the correct value shall be returned.[/MXX]

to:

[MX]When subnormal results are supported, the returned value shall be exact and shall be
independent of the current rounding direction mode.[/MX]

Ref 7.21.5.3 para 5
On page 892 line 30117 section fopen(), change:

[CX]The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2017 defers to the ISO C standard.[/CX]

to:

[CX]Except for the “exclusive access” requirement (see below), the functionality described
on this reference page is aligned with the ISO C standard. Any other conflict between the
requirements described here and the ISO C standard is unintentional. This volume of
POSIX.1-202x defers to the ISO C standard for all fopen() functionality except in relation to
“exclusive access”.[/CX]

Ref 7.21.5.3 para 5
On page 892 line 30132 section fopen(), after applying bug 411, change:

'x' If specified with a prefix beginning with 'w' [CX]or 'a'[/CX], then the function shall

2724
2725

2726
2727

2728
2729

2730
2731

2732
2733

2734
2735

2736
2737

2738
2739

2740
2741

2742

2743
2744

2745
2746

2747
2748
2749

2750

2751
2752
2753
2754
2755

2756
2757

2758

fail if the file already exists, [CX]as if by the O_EXCL flag to open(). If specified
with a prefix beginning with 'r', this modifier shall have no effect.[/CX]

to:

'x' If specified with a prefix beginning with 'w' [CX]or 'a'[/CX], then the function shall
fail if the file already exists or cannot be created; if the file does not exist and can be
created, it shall be created with [CX]an implementation-defined form of[/CX]
exclusive (also known as non-shared) access, [CX]if supported by the underlying file
system, provided the resulting file permissions are the same as they would be without
the 'x' modifier. If specified with a prefix beginning with 'r', this modifier shall have
no effect.[/CX]

Note: The ISO C standard requires exclusive access “to the extent that the underlying file
system supports exclusive access’’, but does not define what it means by this. Taken
at face value—that systems must do whatever they are capable of, at the file system
level, in order to exclude access by others—this would require POSIX.1 systems to
set the file permissions in a way that prevents access by other users and groups.
Consequently, this volume of POSIX.1-202x does not defer to the ISO C standard as
regards the “exclusive access” requirement.

Note to reviewers: This “exclusive access” requirement may be clarified in C2x, in which case the
above text may be changed to match the proposed C2x text.

Ref 7.21.5.3 para 3
On page 892 line 30144 section fopen(), change:

If mode is w, wb, a, ab, w+, wb+, w+b, a+, ab+, or a+b, and …

to:

If the first character in mode is w or a, and …

Ref 7.21.5.3 para 3,5
On page 892 line 30148 section fopen(), change:

If mode is w, wb, a, ab, w+, wb+, w+b, a+, ab+, or a+b, and the file did not previously
exist, the fopen() function shall create a file as if it called the creat() function with a value
appropriate for the path argument interpreted from pathname and a value of S_IRUSR |
S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH for the mode argument.

to:

If the first character in mode is w or a, and the file did not previously exist, the fopen()
function shall create a file as if it called the open() function with a value appropriate for the
path argument interpreted from pathname, a value for the oflag argument as specified below,
and a value of S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH for
the third argument.

Ref 7.21.5.3 para 5
On page 893 line 30158 section fopen(), change:

The file descriptor …

2759
2760

2761

2762
2763
2764
2765
2766
2767
2768

2769
2770
2771
2772
2773
2774
2775

2776
2777

2778
2779

2780

2781

2782

2783
2784

2785
2786
2787
2788

2789

2790
2791
2792
2793
2794

2795
2796

2797

to:

If the first character in mode is r, or the suffix of mode does not include x, the file descriptor
…

Ref (none; see bug 411)
On page 893 line 30160 section fopen(), change the first column heading from:

fopen() Mode

to:

fopen() Mode Without Suffix

and add the following text after the table:

with the addition of the O_CLOEXEC flag if the suffix of mode includes e.

Ref 7.21.5.3 para 5
On page 893 line 30166 section fopen(), add the following new paragraphs:

[CX]If the first character in mode is w or a, the suffix of mode includes x, and the underlying
file system does not support exclusive access, then the file descriptor associated with the
opened stream shall be allocated and opened as if by a call to open() with the following
flags:

fopen() Mode Without Suffix open() Flags

[CX]a or ab O_WRONLY|O_CREAT|O_EXCL|O_APPEND

a+ or a+b or ab+ O_RDWR|O_CREAT|O_EXCL|O_APPEND[/CX]

w or wb O_WRONLY|O_CREAT|O_EXCL|O_TRUNC

w+ or w+b or wb+ O_RDWR|O_CREAT|O_EXCL|O_TRUNC

with the addition of the O_CLOEXEC flag if the suffix of mode includes e.

If the first character in mode is w or a, the suffix of mode includes x, and the underlying file
system supports exclusive access, then the file descriptor associated with the opened stream
shall be allocated and opened as if by a call to open() with the above flags or with the above
flags ORed with an implementation-defined file creation flag if necessary to enable
exclusive access (see above).[/CX]

Note to reviewers: The above change may need to be updated depending on whether WG14 clarify
the “exclusive access” requirement.

Ref 7.21.5.3 para 5
On page 895 line 30236 section fopen(), change APPLICATION USAGE from:

None.

to:

2798

2799
2800

2801
2802

2803

2804

2805

2806

2807

2808
2809

2810
2811
2812
2813

2814

2815
2816
2817
2818
2819

2820
2821

2822
2823

2824

2825

If an application needs to create a file in a way that fails if the file already exists, and either
requires that it does not have exclusive access to the file or does not need exclusive access, it
should use open() with the O_CREAT and O_EXCL flags instead of using fopen() with an x
in the mode. A stream can then be created, if needed, by calling fdopen() on the file
descriptor returned by open().

Note to reviewers: The above change may need to be updated depending on whether WG14 clarify
the “exclusive access” requirement.

Ref 7.21.5.3 para 5
On page 895 line 30238 section fopen(), after applying bug 411, change:

The x mode suffix character was added by C1x only for files opened with a mode string
beginning with w.

to:

The x mode suffix character is specified by the ISO C standard only for files opened with a
mode string beginning with w.

and then add two new paragraphs after the one that starts with the above text:

When the last character in mode is x, the ISO C standard requires that the file is created with
exclusive access to the extent that the underlying system supports exclusive access.
Although POSIX.1 does not specify any method of enabling exclusive access, it allows for
the existence of an implementation-defined file creation flag that enables it. Note that it must
be a file creation flag, not a file access mode flag (that is, one that is included in
O_ACCMODE) or a file status flag, so that it does not affect the value returned by fcntl()
with F_GETFL. On implementations that have such a flag, if support for it is file system
dependent and exclusive access is requested when using fopen() to create a file on a file
system that does not support it, the flag must not be used if it would cause fopen() to fail.

Some implementations support mandatory file locking as a means of enabling exclusive
access to a file. Locks are set in the normal way, but instead of only preventing others from
setting conflicting locks they prevent others from accessing the contents of the locked part
of the file in a way that conflicts with the lock. However, unless the implementation has a
way of setting a whole-file write lock on file creation, this does not satisfy the requirement
in the ISO C standard that the file is “created with exclusive access to the extent that the
underlying system supports exclusive access”. (Having fopen() create the file and set a lock
on the file as two separate operations is not the same, and it would introduce a race
condition whereby another process could open the file and write to it (or set a lock) in
between the two operations.) However, on all implementations that support mandatory file
locking, its use is discouraged; therefore, it is recommended that implementations which
support mandatory file locking do not add a means of creating a file with a whole-file
exclusive lock set, so that fopen() is not required to enable mandatory file locking in order to
conform to the ISO C standard. Note also that, since mandatory file locking is enabled via a
file permissions change, the requirement that the 'x' modifier does not alter the permissions
means that this standard does not allow mandatory file locking to be enabled. An
implementation that has a means of creating a file with a whole-file exclusive lock set would
need to provide a way to change the behavior of fopen() depending on whether the calling
process is executing in a POSIX.1 conforming environment or an ISO C conforming

2826
2827
2828
2829
2830

2831
2832

2833
2834

2835
2836

2837

2838
2839

2840

2841
2842
2843
2844
2845
2846
2847
2848
2849

2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868

environment.

Note to reviewers: The above change may need to be updated depending on whether WG14 clarify
the “exclusive access” requirement.

Ref 7.22.3.3 para 2
On page 933 line 31673 section free(), change:

Otherwise, if the argument does not match a pointer earlier returned by a function in
POSIX.1-2017 that allocates memory as if by malloc(), or if the space has been deallocated
by a call to free() or realloc(), the behavior is undefined.

to:

Otherwise, if the argument does not match a pointer earlier returned by aligned_alloc(),
calloc(), malloc(), [ADV]posix_memalign(),[/ADV] realloc(), or a function in POSIX.1-
20xx that allocates memory as if by malloc(), or if the space has been deallocated by a call
to free() or realloc(), the behavior is undefined.

Ref 7.22.3 para 2
On page 933 line 31677 section free(), add a new paragraph:

For purposes of determining the existence of a data race, free() shall behave as though it
accessed only memory locations accessible through its argument and not other static
duration storage. The function may, however, visibly modify the storage that it deallocates.
Calls to aligned_alloc(), calloc(), free(), malloc(), [ADV]posix_memalign(),[/ADV] and
realloc() that allocate or deallocate a particular region of memory shall occur in a single total
order (see [xref to XBD 4.12.1]), and each such deallocation call shall synchronize with the
next allocation (if any) in this order.

Ref 7.22.3.1
On page 933 line 31691 section free(), add aligned_alloc to the SEE ALSO section.

Ref 7.21.5.3 para 5
On page 942 line 31988 section freopen(), change:

[CX]The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-2017 defers to the ISO C standard.[/CX]

to:

[CX]Except for the “exclusive access” requirement (see [xref to fopen()]), the functionality
described on this reference page is aligned with the ISO C standard. Any other conflict
between the requirements described here and the ISO C standard is unintentional. This
volume of POSIX.1-202x defers to the ISO C standard for all freopen() functionality except
in relation to “exclusive access”.[/CX]

Ref 7.21.5.3 para 3,5; 7.21.5.4 para 2
On page 942 line 32010 section freopen(), replace the following text:

shall be allocated and opened as if by a call to open() with the following flags:

2869

2870
2871

2872
2873

2874
2875
2876

2877

2878
2879
2880
2881

2882
2883

2884
2885
2886
2887
2888
2889
2890

2891
2892

2893
2894

2895
2896
2897

2898

2899
2900
2901
2902
2903

2904
2905

2906

and the table that follows it, and the paragraph added by bug 411 after the table, with:

shall be allocated and opened as if by a call to open() with the flags specified for fopen()
with the same mode argument.

Ref (none)
On page 944 line 32094 section freopen(), change:

It is possible that these side-effects are an unintended consequence of the way the feature is
specified in the ISO/IEC 9899: 1999 standard, but unless or until the ISO C standard is
changed, ...

to:

It is possible that these side-effects are an unintended consequence of the way the feature
was specified in the ISO/IEC 9899: 1999 standard (and still is in the current standard), but
unless or until the ISO C standard is changed, ...

Note to reviewers: if the APPLICATION USAGE and RATIONALE additions for fopen() are
retained, changes should be added here to make the equivalent sections for freopen() refer to those
for fopen().

Ref (none)
On page 944 line 32102 section freopen(), after applying bug 411 change:

The x mode suffix character was added by C1x only for files opened with a mode string
beginning with w.

to:

The x mode suffix character is specified by the ISO C standard only for files opened with a
mode string beginning with w.

Ref 7.12.6.4 para 3
On page 947 line 32161 section frexp(), change:

The integer exponent shall be stored in the int object pointed to by exp.

to:

The integer exponent shall be stored in the int object pointed to by exp; if the integer
exponent is outside the range of int, the results are unspecified.

Ref F.10.3.4 para 3
On page 947 line 32164 section frexp(), add a new paragraph:

[MX]When the radix of the argument is a power of 2, the returned value shall be exact and
shall be independent of the current rounding direction mode.[/MX]

Ref 7.21.6.2 para 4
On page 950 line 32239 section fscanf(), change:

2907

2908
2909

2910
2911

2912
2913
2914

2915

2916
2917
2918

2919
2920
2921

2922
2923

2924
2925

2926

2927
2928

2929
2930

2931

2932

2933
2934

2935
2936

2937
2938

2939
2940

If a directive fails, as detailed below, the function shall return.

to:

When all directives have been executed, or if a directive fails (as detailed below), the
function shall return.

Ref 7.21.6.2 para 5
On page 950 line 32242 section fscanf(), after applying bug 1163 change:

A directive composed of one or more white-space bytes shall be executed by reading input
until no more valid input can be read, or up to the first non-white-space byte , which remains
unread.

to:

A directive composed of one or more white-space bytes shall be executed by reading input
up to the first non-white-space byte, which shall remain unread, or until no more bytes can
be read. The directive shall never fail.

Ref (none)
On page 955 line 32471 section fscanf(), change:

This function is aligned with the ISO/IEC 9899: 1999 standard, and in doing so a few
“obvious” things were not included. Specifically, the set of characters allowed in a scanset is
limited to single-byte characters. In other similar places, multi-byte characters have been
permitted, but for alignment with the ISO/IEC 9899: 1999 standard, it has not been done
here.

to:

The set of characters allowed in a scanset is limited to single-byte characters. In other
similar places, multi-byte characters have been permitted, but for alignment with the ISO C
standard, it has not been done here.

Ref 7.29.2.2 para 4
On page 1004 line 34144 section fwscanf(), change:

If a directive fails, as detailed below, the function shall return.

to:

When all directives have been executed, or if a directive fails (as detailed below), the
function shall return.

Ref 7.29.2.2 para 5
On page 1004 line 34147 section fwscanf(), change:

A directive composed of one or more white-space wide characters is executed by reading
input until no more valid input can be read, or up to the first wide character which is not a
white-space wide character, which remains unread.

2941

2942

2943
2944

2945
2946

2947
2948
2949

2950

2951
2952
2953

2954
2955

2956
2957
2958
2959
2960

2961

2962
2963
2964

2965
2966

2967

2968

2969
2970

2971
2972

2973
2974
2975

to:

A directive composed of one or more white-space wide characters shall be executed by
reading input up to the first wide character that is not a white-space wide character, which
shall remain unread, or until no more wide characters can be read. The directive shall never
fail.

Ref 7.27.3, 7.1.4 para 5
On page 1113 line 37680 section gmtime(), change:

[CX]The gmtime() function need not be thread-safe.[/CX]

to:
The gmtime() function need not be thread-safe; however, gmtime() shall avoid data races
with all functions other than itself, asctime(), ctime() and localtime().

Ref F.10.3.5 para 1
On page 1133 line 38281 section ilogb(), add a new paragraph:

[MX]When the correct result is representable in the range of the return type, the returned
value shall be exact and shall be independent of the current rounding direction mode.[/MX]

Ref F.10.3.5 para 3
On page 1133 line 38282,38285,38288 section ilogb(), change:

[XSI]On XSI-conformant systems, a domain error shall occur[/XSI]

to:

[XSI|MX]On XSI-conformant systems and on systems that support the IEC 60559 Floating-
Point option, a domain error shall occur[/XSI|MX]

Ref 7.12.6.5 para 2
On page 1133 line 38291 section ilogb(), change:

If the correct value is greater than {INT_MAX}, [MX]a domain error shall occur and[/MX]
an unspecified value shall be returned. [XSI]On XSI-conformant systems, a domain error
shall occur and {INT_MAX} shall be returned.[/XSI]

If the correct value is less than {INT_MIN}, [MX]a domain error shall occur and[/MX] an
unspecified value shall be returned. [XSI]On XSI-conformant systems, a domain error shall
occur and {INT_MIN} shall be returned.[/XSI]

to:

If the correct value is greater than {INT_MAX} or less than {INT_MIN}, an unspecified
value shall be returned. [XSI]On XSI-conformant systems, a domain error shall occur and
{INT_MAX} or {INT_MIN}, respectively, shall be returned;[/XSI] [MX]if the IEC 60559
Floating-Point option is supported, a domain error shall occur;[/MX] otherwise, a domain
error or range error may occur.

2976

2977
2978
2979
2980

2981
2982

2983

2984
2985
2986

2987
2988

2989
2990

2991
2992

2993

2994

2995
2996

2997
2998

2999
3000
3001

3002
3003
3004

3005

3006
3007
3008
3009
3010

Ref F.10.3.5 para 3
On page 1133 line 38300 section ilogb(), change:

[XSI]The x argument is zero, NaN, or ±Inf.[/XSI]

to:

[XSI|MX]The x argument is zero, NaN, or ±Inf.[/XSI|MX]

Ref F.10.11 para 1
On page 1174 line 39604 section isgreater(),
and page 1175 line 39642 section isgreaterequal(),
and page 1177 line 39708 section isless(),
and page 1178 line 39746 section islessequal(),
and page 1179 line 39784 section islessgreater(), add a new paragraph:

[MX]Relational operators and their corresponding comparison macros shall produce
equivalent result values, even if argument values are represented in wider formats. Thus,
comparison macro arguments represented in formats wider than their semantic types shall
not be converted to the semantic types, unless the wide evaluation method converts operands
of relational operators to their semantic types. The standard wide evaluation methods
characterized by FLT_EVAL_METHOD equal to 1 or 2 (see [xref to <float.h>]) do not
convert operands of relational operators to their semantic types.[/MX]

(The editors may wish to merge the pages for the above interfaces to reduce duplication – they have
duplicate APPLICATION USAGE as well.)

Ref 7.30.2.2.1 para 4
On page 1202 line 40411 section iswctype(), remove the CX shading from:

If charclass is (wctype_t)0, these functions shall return 0.

Ref 7.17.3.1
On page 1229 line 41126 insert a new kill_dependency() section:

NAME
kill_dependency — terminate a dependency chain

SYNOPSIS
#include <stdatomic.h>
type kill_dependency(type y);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide the
<stdatomic.h> header nor support this macro.

The kill_dependency() macro shall terminate a dependency chain (see [xref to XBD 4.12.1
Memory Ordering]). The argument shall not carry a dependency to the return value.

3011
3012

3013

3014

3015

3016
3017
3018
3019
3020
3021

3022
3023
3024
3025
3026
3027
3028

3029
3030

3031
3032

3033

3034
3035

3036
3037

3038
3039
3040

3041
3042
3043
3044

3045
3046

3047
3048

RETURN VALUE
The kill_dependency() macro shall return the value of y.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
XBD Section 4.12.1, <stdatomic.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.12.8.3, 7.1.4 para 5
On page 1241 line 41433 section lgamma(), change:

[CX]These functions need not be thread-safe.[/CX]

to:

[XSI]If concurrent calls are made to these functions, the value of signgam is indeterminate.[/
XSI]

Ref 7.12.8.3, 7.1.4 para 5
On page 1242 line 41464 section lgamma(), add a new paragraph to APPLICATION USAGE:

If the value of signgam will be obtained after a call to lgamma(), lgammaf(), or lgammal(),
in order to ensure that the value will not be altered by another call in a different thread,
applications should either restrict calls to these functions to be from a single thread or use a
lock such as a mutex or spin lock to protect a critical section starting before the function call
and ending after the value of signgam has been obtained.

Ref 7.12.8.3, 7.1.4 para 5
On page 1242 line 41466 section lgamma(), change RATIONALE from:

None.

to:

3049
3050

3051
3052

3053
3054

3055
3056

3057
3058

3059
3060

3061
3062

3063
3064

3065
3066

3067

3068

3069
3070

3071
3072

3073
3074
3075
3076
3077

3078
3079

3080

3081

Earlier versions of this standard did not require lgamma(), lgammaf(), and lgammal() to be
thread-safe because signgam was a global variable. They are now required to be thread-safe
to align with the ISO C standard (which, since the introduction of threads in 2011, requires
that they avoid data races), with the exception that they need not avoid data races when
storing a value in the signgam variable. Since signgam is not specified by the ISO C
standard, this exception is not a conflict with that standard.

Ref 7.11.2.1, 7.1.4 para 5
On page 1262 line 42124 section localeconv(), change:

[CX]The localeconv() function need not be thread-safe.[/CX]

to:

The localeconv() function need not be thread-safe; however, localeconv() shall avoid data
races with all other functions.

Ref 7.27.3, 7.1.4 para 5
On page 1265 line 42217 section localtime(), change:

[CX]The localtime() function need not be thread-safe.[/CX]

to:
The localtime() function need not be thread-safe; however, localtime() shall avoid data races
with all functions other than itself, asctime(), ctime() and gmtime().

Ref F.10.3.11 para 2
On page 1280 line 42723 section logb(), add a new paragraph:

[MX]The returned value shall be exact and shall be independent of the current rounding
direction mode.[/MX]

Ref 7.13.2.1 para 1
On page 1283 line 42780 section longjmp(), change:

void longjmp(jmp_buf env, int val);

to:

_Noreturn void longjmp(jmp_buf env, int val);

Ref 7.13.2.1 para 2
On page 1283 line 42804 section longjmp(), remove the CX shading from:

The effect of a call to longjmp() where initialization of the jmp_buf structure was not
performed in the calling thread is undefined.

Ref 7.13.2.1 para 4
On page 1283 line 42807 section longjmp(), change:

After longjmp() is completed, program execution continues …

3082
3083
3084
3085
3086
3087

3088
3089

3090

3091

3092
3093

3094
3095

3096

3097
3098
3099

3100
3101

3102
3103

3104
3105

3106

3107

3108

3109
3110

3111
3112

3113
3114

3115

to:

After longjmp() is completed, thread execution shall continue …

Ref 7.22.3 para 1
On page 1295 line 43144 section malloc(), change:

a pointer to any type of object

to:

a pointer to any type of object with a fundamental alignment requirement

Ref 7.22.3 para 1
On page 1295 line 43148 section malloc(), change:

either a null pointer shall be returned, or …

to:

either a null pointer shall be returned to indicate an error, or …

Ref 7.22.3 para 2
On page 1295 line 43150 section malloc(), add a new paragraph:

For purposes of determining the existence of a data race, malloc() shall behave as though it
accessed only memory locations accessible through its argument and not other static
duration storage. The function may, however, visibly modify the storage that it allocates.
Calls to aligned_alloc(), calloc(), free(), malloc(), [ADV]posix_memalign(),[/ADV] and
realloc() that allocate or deallocate a particular region of memory shall occur in a single total
order (see [xref to XBD 4.12.1]), and each such deallocation call shall synchronize with the
next allocation (if any) in this order.

Ref 7.22.3.1
On page 1295 line 43171 section malloc(), add aligned_alloc to the SEE ALSO section.

Ref 7.22.7.1 para 2
On page 1297 line 43194 section mblen(), change:

mbtowc((wchar_t *)0, s, n);

to:

mbtowc((wchar_t *)0, (const char *)0, 0);
mbtowc((wchar_t *)0, s, n);

Ref 7.22.7 para 1
On page 1297 line 43198 section mblen(), change:

this function shall be placed into its initial state by a call for which

to:

3116

3117

3118
3119

3120

3121

3122

3123
3124

3125

3126

3127

3128
3129

3130
3131
3132
3133
3134
3135
3136

3137
3138

3139
3140

3141

3142

3143
3144

3145
3146

3147

3148

this function shall be placed into its initial state at program startup and can be returned to
that state by a call for which

Ref 7.22.7 para 1, 7.1.4 para 5
On page 1297 line 43206 section mblen(), change:

[CX]The mblen() function need not be thread-safe.[/CX]

to:

The mblen() function need not be thread-safe; however, it shall avoid data races with all
other functions.

Ref 7.29.6.3 para 1, 7.1.4 para 5
On page 1299 line 43254 section mbrlen(), change:

[CX]The mbrlen() function need not be thread-safe if called with a NULL ps
argument.[/CX]

to:

If called with a null ps argument, the mbrlen() function need not be thread-safe; however,
such calls shall avoid data races with calls to mbrlen() with a non-null argument and with
calls to all other functions.

Ref 7.28.1, 7.1.4 para 5
On page 1301 line 43296 insert a new mbrtoc16() section:

NAME
mbrtoc16, mbrtoc32 — convert a character to a Unicode character code (restartable)

SYNOPSIS
#include <uchar.h>

size_t mbrtoc16(char16_t *restrict pc16, const char *restrict s,
size_t n, mbstate_t *restrict ps);

size_t mbrtoc32(char32_t *restrict pc32, const char *restrict s,
size_t n, mbstate_t *restrict ps);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

If s is a null pointer, the mbrtoc16() function shall be equivalent to the call:

mbrtoc16(NULL, "", 1, ps)

In this case, the values of the parameters pc16 and n are ignored.

If s is not a null pointer, the mbrtoc16() function shall inspect at most n bytes beginning with
the byte pointed to by s to determine the number of bytes needed to complete the next
character (including any shift sequences). If the function determines that the next character

3149
3150

3151
3152

3153

3154

3155
3156

3157
3158

3159
3160

3161

3162
3163
3164

3165
3166

3167
3168

3169
3170

3171
3172
3173
3174

3175
3176
3177
3178

3179

3180

3181

3182
3183
3184

is complete and valid, it shall determine the values of the corresponding wide characters and
then, if pc16 is not a null pointer, shall store the value of the first (or only) such character in
the object pointed to by pc16. Subsequent calls shall store successive wide characters
without consuming any additional input until all the characters have been stored. If the
corresponding wide character is the null wide character, the resulting state described shall be
the initial conversion state.

If ps is a null pointer, the mbrtoc16() function shall use its own internal mbstate_t object,
which shall be initialized at program start-up to the initial conversion state. Otherwise, the
mbstate_t object pointed to by ps shall be used to completely describe the current
conversion state of the associated character sequence.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

The mbrtoc16() function shall not change the setting of errno if successful.

The mbrtoc32() function shall behave the same way as mbrtoc16() except that the first
parameter shall point to an object of type char32_t instead of char16_t. References to pc16
in the above description shall apply as if they were pc32 when they are being read as
describing mbrtoc32().

If called with a null ps argument, the mbrtoc16() function need not be thread-safe; however,
such calls shall avoid data races with calls to mbrtoc16() with a non-null argument and with
calls to all other functions.

If called with a null ps argument, the mbrtoc32() function need not be thread-safe; however,
such calls shall avoid data races with calls to mbrtoc32() with a non-null argument and with
calls to all other functions.

The implementation shall behave as if no function defined in this volume of POSIX.1-20xx
calls mbrtoc16() or mbrtoc32() with a null pointer for ps.

RETURN VALUE
These functions shall return the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null
wide character (which is the value stored).

between 1 and n inclusive
If the next n or fewer bytes complete a valid character (which is the value
stored); the value returned shall be the number of bytes that complete the
character.

(size_t)−3 If the next character resulting from a previous call has been stored, in which
case no bytes from the input shall be consumed by the call.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
and all n bytes have been processed (no value is stored). When n has at least
the value of the {MB_CUR_MAX} macro, this case can only occur if s
points at a sequence of redundant shift sequences (for implementations with
state-dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid character (no value is stored). In this case,

3185
3186
3187
3188
3189
3190

3191
3192
3193
3194

3195

3196

3197
3198
3199
3200

3201
3202
3203

3204
3205
3206

3207
3208

3209
3210

3211
3212

3213
3214
3215
3216

3217
3218

3219
3220
3221
3222
3223

3224
3225

[EILSEQ] shall be stored in errno and the conversion state is undefined.

ERRORS
These function shall fail if:

[EILSEQ] An invalid character sequence is detected. [CX]In the POSIX locale
an [EILSEQ] error cannot occur since all byte values are valid
characters.[/CX]

These functions may fail if:

[CX][EINVAL] ps points to an object that contains an invalid conversion state.[/CX]

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
c16rtomb

XBD <uchar.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.29.6.3 para 1, 7.1.4 para 5
On page 1301 line 43322 section mbrtowc(), change:

[CX]The mbrtowc() function need not be thread-safe if called with a NULL ps
argument.[/CX]

to:

If called with a null ps argument, the mbrtowc() function need not be thread-safe; however,
such calls shall avoid data races with calls to mbrtowc() with a non-null argument and with
calls to all other functions.

Ref 7.29.6.4 para 1, 7.1.4 para 5
On page 1304 line 43451 section mbsrtowcs(), change:

[CX]The mbsnrtowcs() and mbsrtowcs() functions need not be thread-safe if called with a
NULL ps argument.[/CX]

3226

3227
3228

3229
3230
3231

3232

3233

3234
3235

3236
3237

3238
3239

3240
3241

3242
3243

3244

3245
3246

3247
3248

3249
3250

3251

3252
3253
3254

3255
3256

3257
3258

to:

[CX]If called with a null ps argument, the mbsnrtowcs() function need not be thread-safe;
however, such calls shall avoid data races with calls to mbsnrtowcs() with a non-null
argument and with calls to all other functions.[/CX]

If called with a null ps argument, the mbsrtowcs() function need not be thread-safe;
however, such calls shall avoid data races with calls to mbsrtowcs() with a non-null
argument and with calls to all other functions.

Ref 7.22.7 para 1
On page 1308 line 43557 section mbtowc(), change:

this function is placed into its initial state by a call for which

to:

this function shall be placed into its initial state at program startup and can be returned to
that state by a call for which

Ref 7.22.7 para 1, 7.1.4 para 5
On page 1308 line 43567 section mbtowc(), change:

[CX]The mbtowc() function need not be thread-safe.[/CX]

to:

The mbtowc() function need not be thread-safe; however, it shall avoid data races with all
other functions.

Ref 7.24.5.1 para 2
On page 1311 line 43642 section memchr(), change:

Implementations shall behave as if they read the memory byte by byte from the beginning of
the bytes pointed to by s and stop at the first occurrence of c (if it is found in the initial n
bytes).

to:

The implementation shall behave as if it reads the bytes sequentially and stops as soon as a
matching byte is found.

Ref F.10.3.12 para 2
On page 1346 line 44854 section modf(), add a new paragraph:

[MX]The returned value shall be exact and shall be independent of the current rounding
direction mode.[/MX]

Ref 7.26.4
On page 1384 line 46032 insert the following new mtx_*() sections:

NAME

3259

3260
3261
3262

3263
3264
3265

3266
3267

3268

3269

3270
3271

3272
3273

3274

3275

3276
3277

3278
3279

3280
3281
3282

3283

3284
3285

3286
3287

3288
3289

3290
3291

3292

mtx_destroy, mtx_init — destroy and initialize a mutex

SYNOPSIS
#include <threads.h>

void mtx_destroy(mtx_t *mtx);
int mtx_init(mtx_t *mtx, int type);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The mtx_destroy() function shall release any resources used by the mutex pointed to by mtx.
A destroyed mutex object can be reinitialized using mtx_init(); the results of otherwise
referencing the object after it has been destroyed are undefined. It shall be safe to destroy an
initialized mutex that is unlocked. Attempting to destroy a locked mutex, or a mutex that
another thread is attempting to lock, or a mutex that is being used in a cnd_timedwait() or
cnd_wait() call by another thread, results in undefined behavior. The behavior is undefined if
the value specified by the mtx argument to mtx_destroy() does not refer to an initialized
mutex.

The mtx_init() function shall initialize a mutex object with properties indicated by type,
whose valid values include:

mtx_plain for a simple non-recursive mutex,

mtx_timed for a non-recursive mutex that supports timeout,

mtx_plain | mtx_recursive for a simple recursive mutex, or

mtx_timed | mtx_recursive for a recursive mutex that supports timeout.

If the mtx_init() function succeeds, it shall set the mutex pointed to by mtx to a value that
uniquely identifies the newly initialized mutex. Upon successful initialization, the state of
the mutex becomes initialized and unlocked. Attempting to initialize an already initialized
mutex results in undefined behavior.

[CX]See [xref to XSH 2.9.9 Synchronization Object Copies and Alternative Mappings] for
further requirements.

These functions shall not be affected if the calling thread executes a signal handler during
the call.[/CX]

RETURN VALUE
The mtx_destroy() function shall not return a value.

The mtx_init() function shall return thrd_success on success or thrd_error if the
request could not be honored.

ERRORS
No errors are defined.

3293

3294
3295

3296
3297

3298
3299
3300
3301

3302
3303
3304
3305
3306
3307
3308
3309

3310
3311

3312

3313

3314

3315

3316
3317
3318
3319

3320
3321

3322
3323

3324
3325

3326
3327

3328
3329

EXAMPLES
None.

APPLICATION USAGE
A mutex can be destroyed immediately after it is unlocked. However, since attempting to
destroy a locked mutex, or a mutex that another thread is attempting to lock, or a mutex that
is being used in a cnd_timedwait() or cnd_wait() call by another thread results in undefined
behavior, care must be taken to ensure that no other thread may be referencing the mutex.

RATIONALE
These functions are not affected by signal handlers for the reasons stated in [xref to XRAT
B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
mtx_lock

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
mtx_lock, mtx_timedlock, mtx_trylock, mtx_unlock — lock and unlock a mutex

SYNOPSIS
#include <threads.h>

int mtx_lock(mtx_t *mtx);
int mtx_timedlock(mtx_t * restrict mtx,

 const struct timespec * restrict ts);
int mtx_trylock(mtx_t *mtx);
int mtx_unlock(mtx_t *mtx);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The mtx_lock() function shall block until it locks the mutex pointed to by mtx. If the mutex
is non-recursive, the application shall ensure that it is not already locked by the calling
thread.

The mtx_timedlock() function shall block until it locks the mutex pointed to by mtx or until
after the TIME_UTC -based calendar time pointed to by ts. The application shall ensure that
the specified mutex supports timeout. [CX]Under no circumstance shall the function fail
with a timeout if the mutex can be locked immediately. The validity of the ts parameter need
not be checked if the mutex can be locked immediately.[/CX]

3330
3331

3332
3333
3334
3335
3336

3337
3338
3339

3340
3341

3342
3343

3344

3345
3346

3347
3348

3349
3350

3351
3352
3353
3354
3355

3356
3357
3358
3359

3360
3361
3362

3363
3364
3365
3366
3367

The mtx_trylock() function shall endeavor to lock the mutex pointed to by mtx. If the mutex
is already locked (by any thread, including the current thread), the function shall return
without blocking. If the mutex is recursive and the mutex is currently owned by the calling
thread, the mutex lock count (see below) shall be incremented by one and the mtx_trylock()
function shall immediately return success.

[CX]These functions shall not be affected if the calling thread executes a signal handler
during the call; if a signal is delivered to a thread waiting for a mutex, upon return from the
signal handler the thread shall resume waiting for the mutex as if it was not
interrupted.[/CX]

If a call to mtx_lock(), mtx_timedlock() or mtx_trylock() locks the mutex, prior calls to
mtx_unlock() on the same mutex shall synchronize with this lock operation.

The mtx_unlock() function shall unlock the mutex pointed to by mtx . The application shall
ensure that the mutex pointed to by mtx is locked by the calling thread. [CX]If there are
threads blocked on the mutex object referenced by mtx when mtx_unlock() is called,
resulting in the mutex becoming available, the scheduling policy shall determine which
thread shall acquire the mutex.[/CX]

A recursive mutex shall maintain the concept of a lock count. When a thread successfully
acquires a mutex for the first time, the lock count shall be set to one. Every time a thread
relocks this mutex, the lock count shall be incremented by one. Each time the thread unlocks
the mutex, the lock count shall be decremented by one. When the lock count reaches zero,
the mutex shall become available for other threads to acquire.

For purposes of determining the existence of a data race, mutex lock and unlock operations
on mutexes of type mtx_t behave as atomic operations. All lock and unlock operations on a
particular mutex occur in some particular total order.

If mtx does not refer to an initialized mutex object, the behavior of these functions is
undefined.

RETURN VALUE

The mtx_lock() and mtx_unlock() functions shall return thrd_success on success, or
thrd_error if the request could not be honored.

The mtx_timedlock() function shall return thrd_success on success, or thrd_timedout
if the time specified was reached without acquiring the requested resource, or thrd_error
if the request could not be honored.

The mtx_trylock() function shall return thrd_success on success, or thrd_busy if the
resource requested is already in use, or thrd_error if the request could not be honored.
The mtx_trylock() function can spuriously fail to lock an unused resource, in which case it
shall return thrd_busy.

ERRORS
See RETURN VALUE.

EXAMPLES
None.

3368
3369
3370
3371
3372

3373
3374
3375
3376

3377
3378

3379
3380
3381
3382
3383

3384
3385
3386
3387
3388

3389
3390
3391

3392
3393

3394

3395
3396

3397
3398
3399

3400
3401
3402
3403

3404
3405

3406
3407

APPLICATION USAGE
None.

RATIONALE
These functions are not affected by signal handlers for the reasons stated in [xref to XRAT
B.2.3].

Since <pthread.h> has no equivalent of the mtx_timed mutex property, if the <threads.h>
interfaces are implemented as a thin wrapper around <pthread.h> interfaces (meaning
mtx_t and pthread_mutex_t are the same type), all mutexes support timeout and
mtx_timedlock() will not fail for a mutex that was not initialized with mtx_timed.
Alternatively, implementations can use a less thin wrapper where mtx_t contains additional
properties that are not held in pthread_mutex_t in order to be able to return a failure
indication from mtx_timedlock() calls where the mutex was not initialized with
mtx_timed.

FUTURE DIRECTIONS
None.

SEE ALSO
mtx_destroy, timespec_get

XBD Section 4.12.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref F.10.8.2 para 2
On page 1388 line 46143 section nan(), add a new paragraph:

[MX]The returned value shall be exact and shall be independent of the current rounding
direction mode.[/MX]

Ref F.10.8.3 para 2, F.10.8.4 para 2
On page 1395 line 46388 section nextafter(), add a new paragraph:

[MX]Even though underflow or overflow can occur, the returned value shall be independent
of the current rounding direction mode.[/MX]

Ref 7.22.3 para 2
On page 1448 line 48069 section posix_memalign(), add a new (unshaded) paragraph:

For purposes of determining the existence of a data race, posix_memalign() shall behave as
though it accessed only memory locations accessible through its arguments and not other
static duration storage. The function may, however, visibly modify the storage that it
allocates. Calls to aligned_alloc(), calloc(), free(), malloc(), posix_memalign(), and realloc()
that allocate or deallocate a particular region of memory shall occur in a single total order
(see [xref to XBD 4.12.1]), and each such deallocation call shall synchronize with the next
allocation (if any) in this order.

3408
3409

3410
3411
3412

3413
3414
3415
3416
3417
3418
3419
3420

3421
3422

3423
3424

3425

3426
3427

3428
3429

3430
3431

3432
3433

3434
3435

3436
3437

3438
3439
3440
3441
3442
3443
3444

Ref 7.22.3.1
On page 1449 line 48107 section posix_memalign(), add aligned_alloc to the SEE ALSO section.

Ref F.10.4.4 para 1
On page 1548 line 50724 section pow(), change:

On systems that support the IEC 60559 Floating-Point option, if x is ±0, a pole error shall
occur and pow(), powf(), and powl() shall return ±HUGE_VAL, ±HUGE_VALF, and
±HUGE_VALL, respectively if y is an odd integer, or HUGE_VAL, HUGE_VALF, and
HUGE_VALL, respectively if y is not an odd integer.

to:

On systems that support the IEC 60559 Floating-Point option, if x is ±0:

• if y is an odd integer, a pole error shall occur and pow(), powf(), and powl() shall
return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively;

• if y is finite and is not an odd integer, a pole error shall occur and pow(), powf(), and
powl() shall return HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively;

• if y is -Inf, a pole error may occur and pow(), powf(), and powl() shall return
HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

Ref 7.26
On page 1603 line 52244 section pthread_cancel(), add a new paragraph:

If thread refers to a thread that was created using thrd_create(), the behavior is undefined.

Ref 7.26.5.6
On page 1603 line 52277 section pthread_cancel(), add a new RATIONALE paragraph:

Use of pthread_cancel() to cancel a thread that was created using thrd_create() is undefined
because thrd_join() has no way to indicate a thread was cancelled. The standard developers
considered adding a thrd_canceled enumeration constant that thrd_join() would return in
this case. However, this return would be unexpected in code that is written to conform to the
ISO C standard, and it would also not solve the problem that threads which use only ISO C
<threads.h> interfaces (such as ones created by third party libraries written to conform to
the ISO C standard) have no way to handle being cancelled, as the ISO C standard does not
provide cancellation cleanup handlers.

Ref 7.26.5.5
On page 1639 line 53422 section pthread_exit(), change:

void pthread_exit(void *value_ptr);

to:

_Noreturn void pthread_exit(void *value_ptr);

Ref 7.26.6
On page 1639 line 53427 section pthread_exit(), change:

3445
3446

3447
3448

3449
3450
3451
3452

3453

3454

3455
3456

3457
3458

3459
3460

3461
3462

3463

3464
3465

3466
3467
3468
3469
3470
3471
3472
3473

3474
3475

3476

3477

3478

3479
3480

After all cancellation cleanup handlers have been executed, if the thread has any thread-
specific data, appropriate destructor functions shall be called in an unspecified order.

to:

After all cancellation cleanup handlers have been executed, if the thread has any thread-
specific data (whether associated with key type tss_t or pthread_key_t), appropriate
destructor functions shall be called in an unspecified order.

Ref 7.26.5.5
On page 1639 line 53432 section pthread_exit(), change:

An implicit call to pthread_exit() is made when a thread other than the thread in which
main() was first invoked returns from the start routine that was used to create it.

to:

An implicit call to pthread_exit() is made when a thread that was not created using
thrd_create(), and is not the thread in which main() was first invoked, returns from the start
routine that was used to create it.

Ref 7.26.5.5
On page 1639 line 53451 section pthread_exit(), change APPLICATION USAGE from:

None.

to:

Calls to pthread_exit() should not be made from threads created using thrd_create(), as their
exit status has a different type (int instead of void *). If pthread_exit() is called from the
initial thread and it is not the last thread to terminate, other threads should not try to obtain
its exit status using thrd_join().

Ref 7.26.5.5
On page 1639 line 53453 section pthread_exit(), change:

The normal mechanism by which a thread terminates is to return from the routine that was
specified in the pthread_create() call that started it.

to:

The normal mechanism by which a thread that was started using pthread_create() terminates
is to return from the routine that was specified in the pthread_create() call that started it.

Ref 7.26.5.5, 7.26.6
On page 1640 line 53470 section pthread_exit(), add pthread_key_create, thrd_create, thrd_exit and
tss_create to the SEE ALSO section.

Ref 7.26.5.5
On page 1649 line 53748 section pthread_join(), add a new paragraph:

3481
3482

3483

3484
3485
3486

3487
3488

3489
3490

3491

3492
3493
3494

3495
3496

3497

3498

3499
3500
3501
3502

3503
3504

3505
3506

3507

3508
3509

3510
3511
3512

3513
3514

If thread refers to a thread that was created using thrd_create() and the thread terminates, or
has already terminated, by returning from its start routine, the behavior of pthread_join() is
undefined. If thread refers to a thread that terminates, or has already terminated, by calling
thrd_exit(), the behavior of pthread_join() is undefined.

Ref 7.26.5.5
On page 1651 line 53819 section pthread_join(), add a new RATIONALE paragraph:

The pthread_join() function cannot be used to obtain the exit status of a thread that was
created using thrd_create() and which terminates by returning from its start routine, or of a
thread that terminates by calling thrd_exit(), because such threads have an int exit status,
instead of the void * that pthread_join() returns via its value_ptr argument.

Ref 7.22.4.7
On page 1765 line 57040 insert the following new quick_exit() section:

NAME
quick_exit — terminate a process

SYNOPSIS
#include <stdlib.h>

_Noreturn void quick_exit(int status);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The quick_exit() function shall cause normal process termination to occur. It shall not call
functions registered with atexit() nor any registered signal handlers. If a process calls the
quick_exit() function more than once, or calls the exit() function in addition to the
quick_exit() function, the behavior is undefined. If a signal is raised while the quick_exit()
function is executing, the behavior is undefined.

The quick_exit() function shall first call all functions registered by at_quick_exit(), in the
reverse order of their registration, except that a function is called after any previously
registered functions that had already been called at the time it was registered. If, during the
call to any such function, a call to the longjmp() [CX] or siglongjmp()[/CX] function is made
that would terminate the call to the registered function, the behavior is undefined.

If a function registered by a call to at_quick_exit() fails to return, the remaining registered
functions shall not be called and the rest of the quick_exit() processing shall not be
completed.

Finally, the quick_exit() function shall terminate the process as if by a call to _Exit(status).

RETURN VALUE
The quick_exit() function does not return.

ERRORS
No errors are defined.

3515
3516
3517
3518

3519
3520

3521
3522
3523
3524

3525
3526

3527
3528

3529
3530

3531

3532
3533
3534
3535

3536
3537
3538
3539
3540

3541
3542
3543
3544
3545

3546
3547
3548

3549

3550
3551

3552
3553

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
_Exit, at_quick_exit, atexit, exit

XBD <stdlib.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.22.2.1 para 3, 7.1.4 para 5
On page 1767 line 57095 section rand(), change:

[CX]The rand() function need not be thread-safe.[/CX]

to:

The rand() function need not be thread-safe; however, rand() shall avoid data races with all
functions other than non-thread-safe pseudo-random sequence generation functions.

Ref 7.22.2.2 para 3, 7.1.4 para 5
On page 1767 line 57105 section rand(), add a new paragraph:

The srand() function need not be thread-safe; however, srand() shall avoid data races with
all functions other than non-thread-safe pseudo-random sequence generation functions.

Ref 7.22.3 para 1,2; 7.22.3.5 para 2,3,4; 7.31.12 para 2
On page 1788 line 57862-57892 section realloc(), replace the DESCRIPTION and RETURN
VALUE sections with:

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The realloc() function shall deallocate the old object pointed to by ptr and return a pointer to
a new object that has the size specified by size. The contents of the new object shall be the
same as that of the old object prior to deallocation, up to the lesser of the new and old sizes.
Any bytes in the new object beyond the size of the old object have indeterminate values.

3554
3555

3556
3557

3558
3559

3560
3561

3562
3563

3564

3565
3566

3567
3568

3569

3570

3571
3572

3573
3574

3575
3576

3577
3578
3579

3580
3581
3582
3583

3584
3585
3586
3587

If ptr is a null pointer, realloc() shall be equivalent to malloc() function for the specified
size. Otherwise, if ptr does not match a pointer returned earlier by aligned_alloc(), calloc(),
malloc(), [ADV]posix_memalign(),[/ADV] realloc(), or a function in POSIX.1-20xx that
allocates memory as if by malloc(), or if the space has been deallocated by a call to free() or
realloc(), the behavior is undefined.

If size is non-zero and memory for the new object is not allocated, the old object shall not be
deallocated. [OB]If size is zero and memory for the new object is not allocated, it is
implementation-defined whether the old object is deallocated; if the old object is not
deallocated, its value shall be unchanged.[/OB]

The order and contiguity of storage allocated by successive calls to realloc() is unspecified.
The pointer returned if the allocation succeeds shall be suitably aligned so that it may be
assigned to a pointer to any type of object with a fundamental alignment requirement and
then used to access such an object in the space allocated (until the space is explicitly freed or
reallocated). Each such allocation shall yield a pointer to an object disjoint from any other
object. The pointer returned shall point to the start (lowest byte address) of the allocated
space. If the space cannot be allocated, a null pointer shall be returned. [OB]If the size of the
space requested is 0, the behavior is implementation-defined: either a null pointer shall be
returned to indicate an error, or the behavior shall be as if the size were some non-zero
value, except that the behavior is undefined if the returned pointer is used to access an
object.[/OB]

For purposes of determining the existence of a data race, realloc() shall behave as though it
accessed only memory locations accessible through its arguments and not other static
duration storage. The function may, however, visibly modify the storage that it allocates or
deallocates. Calls to aligned_alloc(), calloc(), free(), malloc(),
[ADV]posix_memalign(),[/ADV] and realloc() that allocate or deallocate a particular region
of memory shall occur in a single total order (see [xref to XBD 4.12.1]), and each such
deallocation call shall synchronize with the next allocation (if any) in this order.

RETURN VALUE
The realloc() function shall return a pointer to the new object (which can have the same
value as a pointer to the old object), or a null pointer if the new object has not been
allocated.

[OB]If size is zero, either:

• A null pointer shall be returned [CX]and, if ptr is not a null pointer, errno shall be set
to an implementation-defined value.[/CX]

• A pointer to the allocated space shall be returned, and the memory object pointed to
by ptr shall be freed. The application shall ensure that the pointer is not used to
access an object.[/OB]

If there is not enough available memory, realloc() shall return a null pointer [CX]and set
errno to [ENOMEM][/CX].

Ref 7.22.3.5 para 3,4
On page 1789 line 57899 section realloc(), change:

The description of realloc() has been modified from previous versions of this standard to
align with the ISO/IEC 9899: 1999 standard. Previous versions explicitly permitted a call to

3588
3589
3590
3591
3592

3593
3594
3595
3596

3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607

3608
3609
3610
3611
3612
3613
3614

3615
3616
3617
3618

3619

3620
3621
3622
3623
3624

3625
3626

3627
3628

3629
3630

realloc(p, 0) to free the space pointed to by p and return a null pointer. While this behavior
could be interpreted as permitted by this version of the standard, the C language committee
have indicated that this interpretation is incorrect. Applications should assume that if
realloc() returns a null pointer, the space pointed to by p has not been freed. Since this could
lead to double-frees, implementations should also set errno if a null pointer actually
indicates a failure, and applications should only free the space if errno was changed.

to:

The ISO C standard makes it implementation-defined whether a call to realloc(p, 0) frees the
space pointed to by p if it returns a null pointer because memory for the new object was not
allocated. POSIX.1 instead requires that implementations set errno if a null pointer is
returned and the space has not been freed, and POSIX applications should only free the
space if errno was changed.

Ref 7.31.12 para 2
On page 1789 line 57909-57912 section realloc(), change FUTURE DIRECTIONS to:

The ISO C standard states that invoking realloc() with a size argument equal to zero is an
obsolescent feature. This feature may be removed in a future version of this standard.

Ref 7.22.3.1
On page 1789 line 57914 section realloc(), add aligned_alloc to the SEE ALSO section.

Ref F.10.7.2 para 2
On page 1809 line 58638 section remainder(), add a new paragraph:

[MX]When subnormal results are supported, the returned value shall be exact.[/MX]

Ref F.10.7.3 para 2
On page 1814 line 58758 section remquo(), add a new paragraph:

[MX]When subnormal results are supported, the returned value shall be exact.[/MX]

Ref F.10.6.6 para 3
On page 1828 line 59258 section round(), add a new paragraph:

[MX]These functions may raise the inexact floating-point exception for finite non-integer
arguments.[/MX]

Ref F.10.6.6 para 3
On page 1828 line 59272 section round(), delete from APPLICATION USAGE:

These functions may raise the inexact floating-point exception if the result differs in value
from the argument.

Ref F.10.3.13 para 2
On page 1829 line 59306 section scalbln(), add a new paragraph:

[MX]If the calculation does not overflow or underflow, the returned value shall be exact and
shall be independent of the current rounding direction mode.[/MX]

3631
3632
3633
3634
3635
3636

3637

3638
3639
3640
3641
3642

3643
3644

3645
3646

3647
3648

3649
3650

3651

3652
3653

3654

3655
3656

3657
3658

3659
3660

3661
3662

3663
3664

3665
3666

Ref 7.11.1.1 para 5
On page 1903 line 61520 section setlocale(), change:

[CX]The setlocale() function need not be thread-safe.[/CX]

to:

The setlocale() function need not be thread-safe; however, it shall avoid data races with all
function calls that do not affect and are not affected by the global locale.

Ref 7.13.2.1 para 1
On page 1970 line 63497 section siglongjmp(), change:

void siglongjmp(sigjmp_buf env, int val);

to:

_Noreturn void siglongjmp(sigjmp_buf env, int val);

Ref 7.13.2.1 para 4
On page 1970 line 63504 section siglongjmp(), change:

After siglongjmp() is completed, program execution shall continue …

to:

After siglongjmp() is completed, thread execution shall continue …

Ref 7.14.1.1 para 5
On page 1971 line 63564 section signal(), change:

with static storage duration

to:

with static or thread storage duration that is not a lock-free atomic object

Ref 7.14.1.1 para 7
On page 1972 line 63573 section signal(), add a new paragraph:

[CX]The signal() function is required to be thread-safe. (See [xref to 2.9.1 Thread-Safety].)
[/CX]

Ref 7.14.1.1 para 7
On page 1972 line 63591 section signal(), change RATIONALE from:

None.

to:

The ISO C standard says that the use of signal() in a multi-threaded program results in
undefined behavior. However, POSIX.1 has required signal() to be thread-safe since before

3667
3668

3669

3670

3671
3672

3673
3674

3675

3676

3677

3678
3679

3680

3681

3682

3683
3684

3685

3686

3687

3688
3689

3690
3691

3692
3693

3694

3695

3696
3697

threads were added to the ISO C standard.

Ref F.10.4.5 para 1
On page 2009 line 64624 section sqrt(), add:

[MX]The returned value shall be dependent on the current rounding direction mode.[/MX]

Ref 7.24.6.2 para 3, 7.1.4 para 5
On page 2035 line 65231 section strerror(), change:

[CX]The strerror() function need not be thread-safe.[/CX]

to:

The strerror() function need not be thread-safe; however, strerror() shall avoid data races
with all other functions.

Ref 7.22.1.3 para 10
On page 2073 line 66514 section strtod(), change:

If the correct value is outside the range of representable values

to:
If the correct value would cause an overflow and default rounding is in effect

Ref 7.24.5.8 para 6, 7.1.4 para 5
On page 2078 line 66674 section strtok(), change:

[CX]The strtok() function need not be thread-safe.[/CX]

to:

The strtok() function need not be thread-safe; however, strtok() shall avoid data races with
all other functions.

Ref 7.22.4.8, 7.1.4 para 5
On page 2107 line 67579 section system(), change:

The system() function need not be thread-safe.

to:

[CX]If concurrent calls to system() are made from multiple threads, it is unspecified
whether:

• each call saves and restores the dispositions of the SIGINT and SIGQUIT signals
independently, or

• in a set of concurrent calls the dispositions in effect after the last call returns are
those that were in effect on entry to the first call.

If a thread is cancelled while it is in a call to system(), it is unspecified whether the child
process is terminated and waited for, or is left running.[/CX]

3698

3699
3700

3701

3702
3703

3704

3705

3706
3707

3708
3709

3710

3711
3712

3713
3714

3715

3716

3717
3718

3719
3720

3721

3722

3723
3724
3725
3726
3727
3728

3729
3730

Ref 7.22.4.8, 7.1.4 para 5
On page 2108 line 67627 section system(), change:

Using the system() function in more than one thread in a process or when the SIGCHLD
signal is being manipulated by more than one thread in a process may produce unexpected
results.

to:

Although system() is required to be thread-safe, it is recommended that concurrent calls
from multiple threads are avoided, since system() is not required to coordinate the saving
and restoring of the dispositions of the SIGINT and SIGQUIT signals across a set of
overlapping calls, and therefore the signals might end up being set to ignored after the last
call returns. Applications should also avoid cancelling a thread while it is in a call to
system() as the child process may be left running in that event. In addition, if another thread
alters the disposition of the SIGCHLD signal, a call to signal() may produce unexpected
results.

Ref 7.22.4.8, 7.1.4 para 5
On page 2109 line 67675 section system(), delete:

#include <signal.h>

Ref 7.22.4.8, 7.1.4 para 5
On page 2109 line 67692,67696,67712 section system(), change sigprocmask to
pthread_sigmask.

Ref 7.22.4.8, 7.1.4 para 5
On page 2110 line 67718 section system(), change:

Note also that the above example implementation is not thread-safe. Implementations can
provide a thread-safe system() function, but doing so involves complications such as how to
restore the signal dispositions for SIGINT and SIGQUIT correctly if there are overlapping
calls, and how to deal with cancellation. The example above would not restore the signal
dispositions and would leak a process ID if cancelled. This does not matter for a non-thread-
safe implementation since canceling a non-thread-safe function results in undefined
behavior (see Section 2.9.5.2, on page 518). To avoid leaking a process ID, a thread-safe
implementation would need to terminate the child process when acting on a cancellation.

to:

Earlier versions of this standard did not require system() to be thread-safe because it alters
the process-wide disposition of the SIGINT and SIGQUIT signals. It is now required to be
thread-safe to align with the ISO C standard, which (since the introduction of threads in
2011) requires that it avoids data races. However, the function is not required to coordinate
the saving and restoring of the dispositions of the SIGINT and SIGQUIT signals across a set
of overlapping calls, and the above example does not do so. The example also does not
terminate and wait for the child process if the calling thread is cancelled, and so would leak
a process ID in that event.

Ref 7.26.5
On page 2148 line 68796 insert the following new thrd_*() sections:

3731
3732

3733
3734
3735

3736

3737
3738
3739
3740
3741
3742
3743
3744

3745
3746

3747

3748
3749
3750

3751
3752

3753
3754
3755
3756
3757
3758
3759
3760

3761

3762
3763
3764
3765
3766
3767
3768
3769

3770
3771

NAME
thrd_create — thread creation

SYNOPSIS
#include <threads.h>

int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The thrd_create() function shall create a new thread executing func(arg). If the thrd_create()
function succeeds, it shall set the object pointed to by thr to the identifier of the newly
created thread. (A thread’s identifier might be reused for a different thread once the original
thread has exited and either been detached or joined to another thread.) The completion of
the thrd_create() function shall synchronize with the beginning of the execution of the new
thread.

[CX]The signal state of the new thread shall be initialized as follows:

• The signal mask shall be inherited from the creating thread.

• The set of signals pending for the new thread shall be empty.

The thread-local current locale shall not be inherited from the creating thread.

The floating-point environment shall be inherited from the creating thread.[/CX]

[XSI] The alternate stack shall not be inherited from the creating thread.[/XSI]

Returning from func shall have the same behavior as invoking thrd_exit() with the value
returned from func.

If thrd_create() fails, no new thread shall be created and the contents of the location
referenced by thr are undefined.

[CX]The thrd_create() function shall not be affected if the calling thread executes a signal
handler during the call.[/CX]

RETURN VALUE
The thrd_create() function shall return thrd_success on success; or thrd_nomem if no
memory could be allocated for the thread requested; or thrd_error if the request could not
be honored, [CX]such as if the system-imposed limit on the total number of threads in a
process {PTHREAD_THREADS_MAX} would be exceeded.[/CX]

ERRORS
See RETURN VALUE.

EXAMPLES

3772
3773

3774
3775

3776

3777
3778
3779
3780

3781
3782
3783
3784
3785
3786

3787

3788

3789

3790

3791

3792

3793
3794

3795
3796

3797
3798

3799
3800
3801
3802
3803

3804
3805

3806

None.

APPLICATION USAGE
There is no requirement on the implementation that the ID of the created thread be available
before the newly created thread starts executing. The calling thread can obtain the ID of the
created thread through the thr argument of the thrd_create() function, and the newly created
thread can obtain its ID by a call to thrd_current().

RATIONALE
The thrd_create() function is not affected by signal handlers for the reasons stated in [xref to
XRAT B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create, thrd_current, thrd_detach, thrd_exit, thrd_join

XBD Section 4.12.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
thrd_current — get the calling thread ID

SYNOPSIS
#include <threads.h>

thrd_t thrd_current(void);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The thrd_current() function shall identify the thread that called it.

RETURN VALUE
The thrd_current() function shall return the thread ID of the thread that called it.

The thrd_current() function shall always be successful. No return value is reserved to
indicate an error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

3807

3808
3809
3810
3811
3812

3813
3814
3815

3816
3817

3818
3819

3820

3821
3822

3823
3824

3825
3826

3827

3828
3829
3830
3831

3832

3833
3834

3835
3836

3837
3838

3839
3840

3841
3842

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_self, thrd_create, thrd_equal

XBD Section 4.12.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
thrd_detach — detach a thread

SYNOPSIS
#include <threads.h>

int thrd_detach(thrd_t thr);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The thrd_detach() function shall change the thread thr from joinable to detached, indicating
to the implementation that any resources allocated to the thread can be reclaimed when that
thread terminates. The application shall ensure that the thread identified by thr has not been
previously detached or joined with another thread.

[CX]The thrd_detach() function shall not be affected if the calling thread executes a signal
handler during the call.[/CX]

RETURN VALUE
The thrd_detach() function shall return thrd_success on success or thrd_error if the
request could not be honored.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The thrd_detach() function is not affected by signal handlers for the reasons stated in [xref
to XRAT B.2.3].

3843
3844

3845
3846

3847
3848

3849

3850
3851

3852
3853

3854
3855

3856

3857
3858
3859
3860

3861
3862
3863
3864

3865
3866

3867
3868
3869

3870
3871

3872
3873

3874
3875

3876
3877
3878

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_detach, thrd_create, thrd_join

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
thrd_equal — compare thread IDs

SYNOPSIS
#include <threads.h>

int thrd_equal(thrd_t thr0, thrd_t thr1);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The thrd_equal() function shall determine whether the thread identified by thr0 refers to the
thread identified by thr1.

[CX]The thrd_equal() function shall not be affected if the calling thread executes a signal
handler during the call.[/CX]

RETURN VALUE
The thrd_equal() function shall return a non-zero value if thr0 and thr1 are equal; otherwise,
zero shall be returned.

If either thr0 or thr1 is not a valid thread ID [CX]and is not equal to PTHREAD_NULL
(which is defined in <pthread.h>)[/CX], the behavior is undefined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
See the RATIONALE section for pthread_equal().

The thrd_equal() function is not affected by signal handlers for the reasons stated in [xref to
XRAT B.2.3].

3879
3880

3881
3882

3883

3884
3885

3886
3887

3888
3889

3890

3891
3892
3893
3894

3895
3896

3897
3898

3899
3900
3901

3902
3903

3904
3905

3906
3907

3908
3909

3910
3911

3912
3913

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_equal, thrd_current

XBD <pthread.h>, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
thrd_exit — thread termination

SYNOPSIS
#include <threads.h>

_Noreturn void thrd_exit(int res);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

For every thread-specific storage key [CX](regardless of whether it has type tss_t or
pthread_key_t)[/CX] which was created with a non-null destructor and for which the value
is non-null, thrd_exit() shall set the value associated with the key to a null pointer value and
then invoke the destructor with its previous value. The order in which destructors are
invoked is unspecified.

If after this process there remain keys with both non-null destructors and values, the
implementation shall repeat this process up to [CX]
{PTHREAD_DESTRUCTOR_ITERATIONS}[/CX] times.

Following this, the thrd_exit() function shall terminate execution of the calling thread and
shall set its exit status to res. [CX]Thread termination shall not release any application
visible process resources, including, but not limited to, mutexes and file descriptors, nor
shall it perform any process-level cleanup actions, including, but not limited to, calling any
atexit() routines that might exist.[/CX]

An implicit call to thrd_exit() is made when a thread that was created using thrd_create()
returns from the start routine that was used to create it (see [xref to thrd_create()]).

[CX]The behavior of thrd_exit() is undefined if called from a destructor function that was
invoked as a result of either an implicit or explicit call to thrd_exit().[/CX]

The process shall exit with an exit status of zero after the last thread has been terminated.
The behavior shall be as if the implementation called exit() with a zero argument at thread
termination time.

RETURN VALUE

3914
3915

3916
3917

3918

3919
3920

3921
3922

3923
3924

3925

3926
3927
3928
3929

3930
3931
3932
3933
3934

3935
3936
3937

3938
3939
3940
3941
3942

3943
3944

3945
3946

3947
3948
3949

3950

This function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Calls to thrd_exit() should not be made from threads created using pthread_create() or via a
SIGEV_THREAD notification, as their exit status has a different type (void * instead of
int). If thrd_exit() is called from the initial thread and it is not the last thread to terminate,
other threads should not try to obtain its exit status using pthread_join().

RATIONALE
The normal mechanism by which a thread that was started using thrd_create() terminates is
to return from the function that was specified in the thrd_create() call that started it. The
thrd_exit() function provides the capability for such a thread to terminate without requiring a
return from the start routine of that thread, thereby providing a function analogous to exit().

Regardless of the method of thread termination, the destructors for any existing thread-
specific data are executed.

FUTURE DIRECTIONS
None.

SEE ALSO
exit, pthread_create, thrd_join

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
thrd_join — wait for thread termination

SYNOPSIS
#include <threads.h>

int thrd_join(thrd_t thr, int *res);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The thrd_join() function shall join the thread identified by thr with the current thread by
blocking until the other thread has terminated. If the parameter res is not a null pointer,
thrd_join() shall store the thread’s exit status in the integer pointed to by res. The
termination of the other thread shall synchronize with the completion of the thrd_join()
function. The application shall ensure that the thread identified by thr has not been

3951

3952
3953

3954
3955

3956
3957
3958
3959
3960

3961
3962
3963
3964
3965

3966
3967

3968
3969

3970
3971

3972

3973
3974

3975
3976

3977
3978

3979

3980
3981
3982
3983

3984
3985
3986
3987
3988

previously detached or joined with another thread.

The results of multiple simultaneous calls to thrd_join() specifying the same target thread
are undefined.

The behavior is undefined if the value specified by the thr argument to thrd_join() refers to
the calling thread.

[CX]It is unspecified whether a thread that has exited but remains unjoined counts against
{PTHREAD_THREADS_MAX}.

If thr refers to a thread that was created using pthread_create() or via a SIGEV_THREAD
notification and the thread terminates, or has already terminated, by returning from its start
routine, the behavior of thrd_join() is undefined. If thr refers to a thread that terminates, or
has already terminated, by calling pthread_exit() or by being cancelled, the behavior of
thrd_join() is undefined.

The thrd_join() function shall not be affected if the calling thread executes a signal handler
during the call.[/CX]

RETURN VALUE
The thrd_join() function shall return thrd_success on success or thrd_error if the
request could not be honored.

[CX]It is implementation-defined whether thrd_join() detects deadlock situations; if it does
detect them, it shall return thrd_error when one is detected.[/CX]

ERRORS
See RETURN VALUE.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The thrd_join() function provides a simple mechanism allowing an application to wait for a
thread to terminate. After the thread terminates, the application may then choose to clean up
resources that were used by the thread. For instance, after thrd_join() returns, any
application-provided stack storage could be reclaimed.

The thrd_join() or thrd_detach() function should eventually be called for every thread that is
created using thrd_create() so that storage associated with the thread may be reclaimed.

The thrd_join() function cannot be used to obtain the exit status of a thread that was created
using pthread_create() or via a SIGEV_THREAD notification and which terminates by
returning from its start routine, or of a thread that terminates by calling pthread_exit(),
because such threads have a void * exit status, instead of the int that thrd_join() returns via
its res argument.

The thrd_join() function cannot be used to obtain the exit status of a thread that terminates
by being cancelled because it has no way to indicate that a thread was cancelled. (The
pthread_join() function does this by returning a reserved void * exit status; it is not possible

3989

3990
3991

3992
3993

3994
3995

3996
3997
3998
3999
4000

4001
4002

4003
4004
4005

4006
4007

4008
4009

4010
4011

4012
4013

4014
4015
4016
4017
4018

4019
4020

4021
4022
4023
4024
4025

4026
4027
4028

to reserve an int value for this purpose without introducing a conflict with the ISO C
standard.) The standard developers considered adding a thrd_canceled enumeration
constant that thrd_join() would return in this case. However, this return would be
unexpected in code that is written to conform to the ISO C standard, and it would also not
solve the problem that threads which use only ISO C <threads.h> interfaces (such as ones
created by third party libraries written to conform to the ISO C standard) have no way to
handle being cancelled, as the ISO C standard does not provide cancellation cleanup
handlers.

The thrd_join() function is not affected by signal handlers for the reasons stated in [xref to
XRAT B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_create, pthread_exit, pthread_join, thrd_create, thrd_exit

XBD Section 4.12.2, <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
thrd_sleep — suspend execution for an interval

SYNOPSIS
#include <threads.h>

int thrd_sleep(const struct timespec *duration,
struct timespec *remaining);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The thrd_sleep() function shall suspend execution of the calling thread until either the
interval specified by duration has elapsed or a signal is delivered to the calling thread whose
action is to invoke a signal-catching function or to terminate the process. If interrupted by a
signal and the remaining argument is not null, the amount of time remaining (the requested
interval minus the time actually slept) shall be stored in the interval it points to. The
duration and remaining arguments can point to the same object.

The suspension time may be longer than requested because the interval is rounded up to an
integer multiple of the sleep resolution or because of the scheduling of other activity by the
system. But, except for the case of being interrupted by a signal, the suspension time shall
not be less than that specified, as measured by the system clock TIME_UTC.

RETURN VALUE
The thrd_sleep() function shall return zero if the requested time has elapsed, −1 if it has
been interrupted by a signal, or a negative value (which may also be −1) if it fails for any
other reason. [CX]If it returns a negative value, it shall set errno to indicate the error.[/CX]

4029
4030
4031
4032
4033
4034
4035
4036

4037
4038

4039
4040

4041
4042

4043

4044
4045

4046
4047

4048
4049

4050
4051

4052
4053
4054
4055

4056
4057
4058
4059
4060
4061

4062
4063
4064
4065

4066
4067
4068
4069

ERRORS
[CX]The thrd_sleep() function shall fail if:

[EINTR]
The thrd_sleep() function was interrupted by a signal.

[EINVAL]
The duration argument specified a nanosecond value less than zero or greater than or
equal to 1000 million.[/CX]

EXAMPLES
None.

APPLICATION USAGE
Since the return value may be -1 for errors other than [EINTR], applications should examine
errno to distinguish [EINTR] from other errors (and thus determine whether the unslept time
is available in the interval pointed to by remaining).

RATIONALE
The thrd_sleep() function is identical to the nanosleep() function except that the return value
may be any negative value when it fails with an error other than [EINTR].

FUTURE DIRECTIONS
None.

SEE ALSO
nanosleep

XBD <threads.h>, <time.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
thrd_yield — yield the processor

SYNOPSIS
#include <threads.h>

void thrd_yield(void);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

[CX]The thrd_yield() function shall force the running thread to relinquish the processor until
it again becomes the head of its thread list.[/CX]

RETURN VALUE
This function shall not return a value.

4070
4071

4072
4073

4074
4075
4076

4077
4078

4079
4080
4081
4082

4083
4084
4085

4086
4087

4088
4089

4090

4091
4092

4093
4094

4095
4096

4097

4098
4099
4100
4101

4102
4103

4104
4105

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
See the APPLICATION USAGE section for sched_yield().

RATIONALE
The thrd_yield() function is identical to the sched_yield() function except that it does not
return a value.

FUTURE DIRECTIONS
None.

SEE ALSO
sched_yield

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.27.2.5
On page 2161 line 69278 insert a new timespec_get() section:

NAME
timespec_get — get time

SYNOPSIS
#include <time.h>

int timespec_get(struct timespec *ts, int base);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The timespec_get() function shall set the interval pointed to by ts to hold the current
calendar time based on the specified time base.

[CX]If base is TIME_UTC, the members of ts shall be set to the same values as would be
set by a call to clock_gettime(CLOCK_REALTIME, ts). If the number of seconds will not
fit in an object of type time_t, the function shall return zero.[/CX]

RETURN VALUE
If the timespec_get() function is successful it shall return the non-zero value base; otherwise,
it shall return zero.

4106
4107

4108
4109

4110
4111

4112
4113
4114

4115
4116

4117
4118

4119

4120
4121

4122
4123

4124
4125

4126
4127

4128

4129
4130
4131
4132

4133
4134

4135
4136
4137

4138
4139
4140

ERRORS
See DESCRIPTION.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres, time

XBD <time.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.21.4.4 para 4, 7.1.4 para 5
On page 2164 line 69377 section tmpnam(), change:

[CX]The tmpnam() function need not be thread-safe if called with a NULL parameter.[/CX]

to:

If called with a null pointer argument, the tmpnam() function need not be thread-safe;
however, such calls shall avoid data races with calls to tmpnam() with a non-null argument
and with calls to all other functions.

Ref 7.30.3.2.1 para 4
On page 2171 line 69568 section towctrans(), change:

If successful, the towctrans() [CX]and towctrans_l()[/CX] functions shall return the mapped
value of wc using the mapping described by desc. Otherwise, they shall return wc
unchanged.

to:

If successful, the towctrans() [CX]and towctrans_l()[/CX] functions shall return the mapped
value of wc using the mapping described by desc, or the value of wc unchanged if desc is
zero. [CX]Otherwise, they shall return wc unchanged.[/CX]

Ref F.10.6.8 para 2
On page 2177 line 69716 section trunc(), add a new paragraph:

[MX]These functions may raise the inexact floating-point exception for finite non-integer

4141
4142

4143
4144

4145
4146

4147
4148

4149
4150

4151
4152

4153

4154
4155

4156
4157

4158

4159

4160
4161
4162

4163
4164

4165
4166
4167

4168

4169
4170
4171

4172
4173

4174

arguments.[/MX]

Ref F.10.6.8 para 1,2
On page 2177 line 69719 section trunc(), change:

[MX]The result shall have the same sign as x.[/MX]

to:

[MX]The returned value shall be exact, shall be independent of the current rounding
direction mode, and shall have the same sign as x.[/MX]

Ref F.10.6.8 para 2
On page 2177 line 69730 section trunc(), delete from APPLICATION USAGE:

These functions may raise the inexact floating-point exception if the result differs in value
from the argument.

Ref 7.26.6
On page 2182 line 69835 insert the following new tss_*() sections:

NAME
tss_create — thread-specific data key creation

SYNOPSIS
#include <threads.h>

int tss_create(tss_t *key, tss_dtor_t dtor);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The tss_create() function shall create a thread-specific storage pointer with destructor dtor,
which can be null.

A null pointer value shall be associated with the newly created key in all existing threads.
Upon subsequent thread creation, the value associated with all keys shall be initialized to a
null pointer value in the new thread.

Destructors associated with thread-specific storage shall not be invoked at process
termination.

The behavior is undefined if the tss_create() function is called from within a destructor.

[CX]The tss_create() function shall not be affected if the calling thread executes a signal
handler during the call.[/CX]

RETURN VALUE
If the tss_create() function is successful, it shall set the thread-specific storage pointed to by
key to a value that uniquely identifies the newly created pointer and shall return
thrd_success; otherwise, thrd_error shall be returned and the thread-specific storage

4175

4176
4177

4178

4179

4180
4181

4182
4183

4184
4185

4186
4187

4188
4189

4190
4191

4192

4193
4194
4195
4196

4197
4198

4199
4200
4201

4202
4203

4204

4205
4206

4207
4208
4209
4210

pointed to by key has an indeterminate value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The tss_create() function performs no implicit synchronization. It is the responsibility of the
programmer to ensure that it is called exactly once per key before use of the key.

RATIONALE
If the value associated with a key needs to be updated during the lifetime of the thread, it
may be necessary to release the storage associated with the old value before the new value is
bound. Although the tss_set() function could do this automatically, this feature is not needed
often enough to justify the added complexity. Instead, the programmer is responsible for
freeing the stale storage:

old = tss_get(key);
new = allocate();
destructor(old);
tss_set(key, new);

There is no notion of a destructor-safe function. If an application does not call thrd_exit() or
pthread_exit() from a signal handler, or if it blocks any signal whose handler may call
thrd_exit() or pthread_exit() while calling async-unsafe functions, all functions can be safely
called from destructors.

The tss_create() function is not affected by signal handlers for the reasons stated in [xref to
XRAT B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_exit, pthread_key_create, thrd_exit, tss_delete, tss_get

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
tss_delete — thread-specific data key deletion

SYNOPSIS
#include <threads.h>

void tss_delete(tss_t key);

DESCRIPTION

4211

4212
4213

4214
4215

4216
4217
4218

4219
4220
4221
4222
4223
4224

4225
4226
4227
4228

4229
4230
4231
4232

4233
4234

4235
4236

4237
4238

4239

4240
4241

4242
4243

4244
4245

4246

4247

[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The tss_delete() function shall release any resources used by the thread-specific storage
identified by key. The thread-specific data values associated with key need not be null at the
time tss_delete() is called. It is the responsibility of the application to free any application
storage or perform any cleanup actions for data structures related to the deleted key or
associated thread-specific data in any threads; this cleanup can be done either before or after
tss_delete() is called.

The application shall ensure that the tss_delete() function is only called with a value for key
that was returned by a call to tss_create() before the thread commenced executing
destructors.

If tss_delete() is called while another thread is executing destructors, whether this will affect
the number of invocations of the destructor associated with key on that thread is unspecified.

The tss_delete() function shall be callable from within destructor functions. Calling
tss_delete() shall not result in the invocation of any destructors. Any destructor function that
was associated with key shall no longer be called upon thread exit.

Any attempt to use key following the call to tss_delete() results in undefined behavior.

[CX]The tss_delete() function shall not be affected if the calling thread executes a signal
handler during the call.[/CX]

RETURN VALUE
This function shall not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
A thread-specific data key deletion function has been included in order to allow the
resources associated with an unused thread-specific data key to be freed. Unused thread-
specific data keys can arise, among other scenarios, when a dynamically loaded module that
allocated a key is unloaded.

Conforming applications are responsible for performing any cleanup actions needed for data
structures associated with the key to be deleted, including data referenced by thread-specific
data values. No such cleanup is done by tss_delete(). In particular, destructor functions
are not called. See the RATIONALE for pthread_key_delete() for the reasons for this
division of responsibility.

The tss_delete() function is not affected by signal handlers for the reasons stated in [xref to

4248
4249
4250

4251
4252
4253
4254
4255
4256

4257
4258
4259

4260
4261

4262
4263
4264

4265

4266
4267

4268
4269

4270
4271

4272
4273

4274
4275

4276
4277
4278
4279
4280

4281
4282
4283
4284
4285

4286

XRAT B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_key_create, tss_create

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

NAME
tss_get, tss_set — thread-specific data management

SYNOPSIS
#include <threads.h>

void *tss_get(tss_t key);
int tss_set(tss_t key, void *val);

DESCRIPTION
[CX] The functionality described on this reference page is aligned with the ISO C standard.
Any conflict between the requirements described here and the ISO C standard is
unintentional. This volume of POSIX.1-20xx defers to the ISO C standard.[/CX]

The tss_get() function shall return the value for the current thread held in the thread-specific
storage identified by key.

The tss_set() function shall set the value for the current thread held in the thread-specific
storage identified by key to val. This action shall not invoke the destructor associated with
the key on the value being replaced.

The application shall ensure that the tss_get() and tss_set() functions are only called with a
value for key that was returned by a call to tss_create() before the thread commenced
executing destructors.

The effect of calling tss_get() or tss_set() after key has been deleted with tss_delete() is
undefined.

[CX]Both tss_get() and tss_set() can be called from a thread-specific data destructor
function. A call to tss_get() for the thread-specific data key being destroyed shall return a
null pointer, unless the value is changed (after the destructor starts) by a call to tss_set().
Calling tss_set() from a thread-specific data destructor function may result either in lost
storage (after at least PTHREAD_DESTRUCTOR_ITERATIONS attempts at destruction)
or in an infinite loop.

These functions shall not be affected if the calling thread executes a signal handler during
the call.[/CX]

RETURN VALUE

4287

4288
4289

4290
4291

4292

4293
4294

4295
4296

4297
4298

4299
4300

4301
4302
4303
4304

4305
4306

4307
4308
4309

4310
4311
4312

4313
4314

4315
4316
4317
4318
4319
4320

4321
4322

4323

The tss_get() function shall return the value for the current thread. If no thread-specific data
value is associated with key, then a null pointer shall be returned.

The tss_set() function shall return thrd_success on success or thrd_error if the request
could not be honored.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
These functions are not affected by signal handlers for the reasons stated in [xref to XRAT
B.2.3].

FUTURE DIRECTIONS
None.

SEE ALSO
pthread_getspecific, tss_create

XBD <threads.h>

CHANGE HISTORY
First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Ref 7.31.11 para 2
On page 2193 line 70145 section ungetc(), change FUTURE DIRECTIONS from:

None.

to:

The ISO C standard states that the use of ungetc() on a binary stream where the file position
indicator is zero prior to the call is an obsolescent feature. In POSIX.1 there is no distinction
between binary and text streams, so this applies to all streams. This feature may be removed
in a future version of this standard.

Ref 7.29.6.3 para 1, 7.1.4 para 5
On page 2242 line 71441 section wcrtomb(), change:

[CX]The wcrtomb() function need not be thread-safe if called with a NULL ps
argument.[/CX]

to:

If called with a null ps argument, the wcrtomb() function need not be thread-safe; however,

4324
4325

4326
4327

4328
4329

4330
4331

4332
4333

4334
4335
4336

4337
4338

4339
4340

4341

4342
4343

4344
4345

4346

4347

4348
4349
4350
4351

4352
4353

4354
4355

4356

4357

such calls shall avoid data races with calls to wcrtomb() with a non-null argument and with
calls to all other functions.

Ref 7.29.6.4 para 1, 7.1.4 para 5
On page 2266 line 72111 section wcsrtombs(), change:

[CX]The wcsnrtombs() and wcsrtombs() functions need not be thread-safe if called with a
NULL ps argument.[/CX]

to:

[CX]If called with a null ps argument, the wcsnrtombs() function need not be thread-safe;
however, such calls shall avoid data races with calls to wcsnrtombs() with a non-null
argument and with calls to all other functions.[/CX]

If called with a null ps argument, the wcsrtombs() function need not be thread-safe;
however, such calls shall avoid data races with calls to wcsrtombs() with a non-null
argument and with calls to all other functions.

Ref 7.22.7 para 1, 7.1.4 para 5
On page 2292 line 72879 section wctomb(), change:

[CX]The wctomb() function need not be thread-safe.[/CX]

to:

The wctomb() function need not be thread-safe; however, it shall avoid data races with all
other functions.

Changes to XCU

Ref 7.22.2
On page 2333 line 74167 section 1.1.2.2 Mathematical Functions, change:

Section 7.20.2, Pseudo-Random Sequence Generation Functions

to:

Section 7.22.2, Pseudo-Random Sequence Generation Functions

Ref 6.10.8.1 para 1 (__STDC_VERSION__)
On page 2542 line 82220 section c99, rename the c99 page to c17.

Ref 7.26
On page 2545 line 82375 section c99 (now c17), change:

... , <spawn.h>, <sys/socket.h>, ...

to:

4358
4359

4360
4361

4362
4363

4364

4365
4366
4367

4368
4369
4370

4371
4372

4373

4374

4375
4376

4377

4378
4379

4380

4381

4382

4383
4384

4385
4386

4387

4388

... , <spawn.h>, <sys/socket.h>, <threads.h>, ...

Ref 7.26
On page 2545 line 82382 section c99 (now c17), change:

This option shall make available all interfaces referenced in <pthread.h> and pthread_kill()
and pthread_sigmask() referenced in <signal.h>.

to:

This option shall make available all interfaces referenced in <pthread.h> and <threads.h>,
and also pthread_kill() and pthread_sigmask() referenced in <signal.h>.

Ref 6.10.8.1 para 1 (__STDC_VERSION__)
On page 2552-2553 line 82641-82677 section c99 (now c17), change CHANGE HISTORY to:

First released in Issue 8. Included for alignment with the ISO/IEC 9899:20xx standard.

Changes to XRAT

Ref G.1 para 1
On page 3483 line 117680 section A.1.7.1 Codes, add a new tagged paragraph:

MXC This margin code is used to denote functionality related to the IEC 60559 Complex
Floating-Point option.

Ref (none)
On page 3489 line 117909 section A.3 Definitions (Byte), change:

alignment with the ISO/IEC 9899: 1999 standard, where the intN_t types are now defined.

to:

alignment with the ISO/IEC 9899: 1999 standard, where the intN_t types were first defined.

Ref 5.1.2.4, 7.17.3
On page 3515 line 118946 section A.4.12 Memory Synchronization, change:

A.4.12 Memory Synchronization

to:

A.4.12 Memory Ordering and Synchronization

A.4.12.1 Memory Ordering

There is no additional rationale provided for this section.

A.4.12.2 Memory Synchronization

4389

4390
4391

4392
4393

4394

4395
4396

4397
4398

4399

4400

4401
4402

4403
4404

4405
4406

4407

4408

4409

4410
4411

4412

4413

4414

4415

4416

4417

Ref 6.10.8.1 para 1 (__STDC_VERSION__)
On page 3556 line 120684 section A.12.2 Utility Syntax Guidelines, change:

Thus, they had to devise a new name, c89 (now superseded by c99), rather than …

to:

Thus, they had to devise a new name, c89 (subsequently superseded by c99 and now by
c17), rather than …

Ref K.3.1.1
On page 3567 line 121053 section B.2.2.1 POSIX.1 Symbols, add a new unnumbered subsection:

The __STDC_WANT_LIB_EXT1__ Feature Test Macro

The ISO C standard specifies the feature test macro __STDC_WANT_LIB_EXT1__ as the
announcement mechanism for the application that it requires functionality from Annex K. It
specifies that the symbols specified in Annex K (if supported) are made visible when
__STDC_WANT_LIB_EXT1__ is 1 and are not made visible when it is 0, but leaves it
unspecified whether they are made visible when __STDC_WANT_LIB_EXT1__ is
undefined. POSIX.1 requires that they are not made visible when the macro is undefined
(except for those symbols that are already explicitly allowed to be visible through the
definition of _POSIX_C_SOURCE or _XOPEN_SOURCE, or both).

POSIX.1 does not include the interfaces specified in Annex K of the ISO C standard, but
allows the symbols to be made visible in headers when requested by the application in order
that applications can use symbols from Annex K and symbols from POSIX.1 in the same
translation unit.

Ref 6.10.3.4
On page 3570 line 121176 section B.2.2.2 The Name Space, change:

as described for macros that expand to their own name as in Section 3.8.3.4 of the ISO C
standard

to:

as described for macros that expand to their own name as in Section 6.10.3.4 of the ISO C
standard

Ref 7.5 para 2
On page 3571 line 121228-121243 section B.2.3 Error Numbers, change:

The ISO C standard requires that errno be an assignable lvalue. Originally, …
[…]
… using the return value for a mixed purpose was judged to be of limited use and
error prone.

to:
The original ISO C standard just required that errno be an modifiable lvalue. Since the
introduction of threads in 2011, the ISO C standard has instead required that errno be a
macro which expands to a modifiable lvalue that has thread local storage duration.

4418
4419

4420

4421

4422
4423

4424
4425

4426

4427
4428
4429
4430
4431
4432
4433
4434

4435
4436
4437
4438

4439
4440

4441
4442

4443

4444
4445

4446
4447

4448
4449
4450
4451

4452
4453
4454
4455

Ref 7.26
On page 3575 line 121390 section B.2.3 Error Numbers, change:

In particular, clients of blocking interfaces need not handle any possible [EINTR] return as a
special case since it will never occur.

to:

In particular, applications calling blocking interfaces need not handle any possible [EINTR]
return as a special case since it will never occur. In the case of threads functions in
<threads.h>, the requirement is stated in terms of the call not being affected if the calling
thread executes a signal handler during the call, since these functions return errors in a
different way and cannot distinguish an [EINTR] condition from other error conditions.

Ref (none)
On page 3733 line 128128 section C.2.6.4 Arithmetic Expansion, change:

Although the ISO/IEC 9899: 1999 standard now requires support for …

to:

Although the ISO C standard requires support for …

Ref 7.17
On page 3789 line 129986 section E.1 Subprofiling Option Groups, change:

by collecting sets of related functions

to:

by collecting sets of related functions and generic functions

Ref 7.22.3.1, 7.27.2.5, 7.22.4
On page 3789, 3792 line 130022-130032, 130112-130114 section E.1 Subprofiling Option Groups,
add new functions (in sorted order) to the existing groups as indicated:

POSIX_C_LANG_SUPPORT
aligned_alloc(), timespec_get()

POSIX_MULTI_PROCESS
at_quick_exit(), quick_exit()

Ref 7.17
On page 3789 line 129991 section E.1 Subprofiling Option Groups, add:

POSIX_C_LANG_ATOMICS: ISO C Atomic Operations
atomic_compare_exchange_strong(), atomic_compare_exchange_strong_explicit(),
atomic_compare_exchange_weak(), atomic_compare_exchange_weak_explicit(),
atomic_exchange(), atomic_exchange_explicit(), atomic_fetch_add(),
atomic_fetch_add_explicit(), atomic_fetch_and(), atomic_fetch_and_explicit(),
atomic_fetch_or(), atomic_fetch_or_explicit(), atomic_fetch_sub(),
atomic_fetch_sub_explicit(), atomic_fetch_xor(), atomic_fetch_xor_explicit(),

4456
4457

4458
4459

4460

4461
4462
4463
4464
4465

4466
4467

4468

4469

4470

4471
4472

4473

4474

4475

4476
4477
4478

4479
4480

4481
4482

4483
4484

4485
4486
4487
4488
4489
4490
4491

atomic_flag_clear(), atomic_flag_clear_explicit(), atomic_flag_test_and_set(),
atomic_flag_test_and_set_explicit(), atomic_init(), atomic_is_lock_free(),
atomic_load(), atomic_load_explicit(), atomic_signal_fence(),
atomic_thread_fence(), atomic_store(), atomic_store_explicit(), kill_dependency()

Ref 7.26
On page 3790 line 1300349 section E.1 Subprofiling Option Groups, add:

POSIX_C_LANG_THREADS: ISO C Threads
call_once(), cnd_broadcast(), cnd_signal(), cnd_destroy(), cnd_init(),
cnd_timedwait(), cnd_wait(), mtx_destroy(), mtx_init(), mtx_lock(), mtx_timedlock(),
mtx_trylock(), mtx_unlock(), thrd_create(), thrd_current(), thrd_detach(),
thrd_equal(), thrd_exit(), thrd_join(), thrd_sleep(), thrd_yield(), tss_create(),
tss_delete(), tss_get(), tss_set()

POSIX_C_LANG_UCHAR: ISO C Unicode Utilities
c16rtomb(), c32rtomb(), mbrtoc16(), mbrtoc32()

4492
4493
4494
4495

4496
4497

4498
4499
4500
4501
4502
4503

4504
4505

	TODO
	Introduction
	Global Change
	Changes to XBD
	Changes to XSH
	Changes to XCU
	Changes to XRAT

