
Extending shell conditionals
David A. Wheeler, Geoff Clare, and David Korn

2013-12-09

This white paper proposes various extensions to the existing POSIX shell conditional
statements by extending test/[and by adding sh support for [[...]]. It supports Austin group
defect report 375 (http :// austingroupbugs . net / view . php ? id =375), in particular reply 967.

To the extent possible under law, the contributors to this document have waived all copyright
and released it to the copyright public domain, under the terms of the Creative Commons CC0
waiver: http :// creativecommons . org / choose / zero / waiver This way, any of its material can be
used by the standards developers (or others) in any way they desire.

Table of contents:

Overview
Issue
Background
Requirements
Importance

Proposed changes to the POSIX specification
Add “==” to test
Add “[[”

Rationale
Add “==” to test
Add “- nt ” (newer - than) and “- ot ” (older - than)
Add “- ef ”
Add “[[”

Alternative proposals
Adding “<” and “>” to test

Appendix A : Interpretation of - nt and - ot

Overview

Issue
Many implementations of "test" (aka "["), including shell built-ins, implement conditionals beyond
those specified in the current version of POSIX. What's more, many extant programs rely on
these extensions. This proposal recommends formally adding these widely-implemented
extensions to the POSIX specification itself, as these extensions have become widespread and

http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://creativecommons.org/choose/zero/waiver
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375

are ready to be standardized. Each of these additions is described separately, since they can
be treated separately.

Background
 Austin group defect report 375 (http :// austingroupbugs . net / view . php ? id =375) (“Extend test/[...]
conditionals: ==, <, >, -nt, -ot, -ef”) proposed extensions to POSIX "test". It proposed adding
certain widely-implemented and widely-used extensions of "test" to the POSIX standard.

This defect report was discussed at the September 8, 2011 teleconference meeting and it was
agreed that the submitter should “produce a whitepaper expanding the proposal (similar to
proposals made in the past, for example the LFS proposal,
http :// www . unix . org / version 2/ whatsnew / lfs 20 mar . html (Adding Support for Arbitrary File Sizes to
the Single UNIX Specification). This could then be widely circulated amongst all interested
parties to look for consensus. The standard developers recommend that the white paper should
pay particular attention to note 670.”

This document is the whitepaper requested by the Austin group. This whitepaper attempts to
expand the proposal so that it can be “widely circulated amongst all interested parties to look for
consensus”.. It attempts to respond to standards developers recommendations, in particular, to
pay “particular attention to note 670.”

This document was first developed by David A. Wheeler (dwheeler, at, dwheeler, dot com),
based on feedback on the Austin group bug tracker and mailing list. The first version of this
document was dated 2011-11-15. It has been changed since that time due to various feedback,
in particular, historical corrections from David Korn (especially his email on November 16,
2011), suggestions from Geoff Clare in November 2011, and further input from David Korn in
October 2013 (e.g., to name the section “conditional command”). This proposal was discussed
in the 2013-11-21 Austin group teleconference; at that time the group decided that “==” and
nothing else should be added to “test/[”, “[[...]]” should be added, and the other functionality such
as “-nt” should be added to “[[...]]” instead of “test/[”. More recent comments questioned if “-v”
was needed; David A. Wheeler found that many implementations do not support “-v” and in any
case,

Requirements
These proposals are only proposed because they meet the following requirements:

1. Are already implemented in at least one implementation.
2. Are used in existing programs/scripts.
3. Are easily implemented.

Importance

http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://www.unix.org/version2/whatsnew/lfs20mar.html
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375

All of these proposals can be implemented in other ways, but their omission in POSIX can
render otherwise-compatible scripts non-conforming. Some of these extensions are identified
as "bashisms" in pages such as http :// mywiki . wooledge . org / Bashism , but in fact these are
widely implemented and/or depended upon, whether or not bash is used.

Their widespread use and implementation suggests that they are ready to be added to POSIX
itself.

Proposed changes to the POSIX
specification

Note that page and line numbers are for the 2008 edition unless otherwise stated.

Add “==” to test/[
In the text of test, after page 3224 line 107505, add the following primary definition:

● s1 == s2 True if the strings s1 and s2 are identical; otherwise, false. This primary
shall be equivalent to s1 = s2.

Add “[[”
In XCU section 2.4, line 72478, add “[[“ and “]]” to the list of reserved words. On line 72491,
remove “[[“ and “]]” from the reserved word list.

In section 2.6, extend the first paragraph to cover conditional command extensions. After “Not
all expansions are performed on every word, as explained in the following sections” add “and in
section 2.9.x Conditional commands”.

In section 2.9, add a new third-level subsection “Conditional command” after the “function
definition” section, e.g., as a new 2.9.6:

CONDITIONAL COMMAND

A “conditional command” evaluates a conditional expression between the reserved word “[[”
and the reserved word “]]”. The format for the command is

[[conditional-expression]]

http://mywiki.wooledge.org/Bashism
http://mywiki.wooledge.org/Bashism
http://mywiki.wooledge.org/Bashism
http://mywiki.wooledge.org/Bashism
http://mywiki.wooledge.org/Bashism
http://mywiki.wooledge.org/Bashism
http://mywiki.wooledge.org/Bashism
http://mywiki.wooledge.org/Bashism
http://mywiki.wooledge.org/Bashism

The exit status of the command shall be zero if the conditional expression evaluates to true and
shall be 1 if it evaluates to false. Within the conditional expression, '!' shall be a reserved word
and '(', ')', '<', '>', “&&”, and “||” shall be operators. Syntactic examination of the expression shall
be done before any expansions; text that is quoted or is the result of an expansion shall not be
recognized as a reserved word, operator, DB_UNARY token, or DB_BINARY token when it is
directly contained in a conditional command. Word expansions shall not be performed for
DB_UNARY and DB_BINARY tokens. Field splitting and pathname expansion shall not be
performed on WORD tokens , but other expansions shall be performed as described in section
2.6 (word expansions). Once a conditional command is begun with the command “[[”, an
unquoted “]]” word shall terminate it.

All of the unary and binary primaries of the test utility shall be available as conditional operators
(DB_UNARY and DB_BINARY tokens, respectively) in a conditional command and shall behave
as described for the test utility, except for:

● Isolated strings. Strictly conforming applications shall ensure that they use portable
alternatives to determine if a string has nonzero length such as -n string, ! -z string,
or string != ""; they shall not use an isolated variable reference as an expression.

● Obsolete and/or. An implementation need not support the -a (and) and -o (or)
primaries, and strictly conforming applications shall avoid using them; see the
description of && and || below.
Reviewers' Note: these primaries are expected to be removed from the test utility in
Issue 8, in which case this list item will not need to be added.

● String equality. The expressions s1 = s2 and s1 == s2 shall instead behave as
described below.

In addition, the following conditional operators shall be supported inside a conditional command:
string == pattern

true if the entire string matches the pattern as described in “Pattern Matching
Notation” (section 2.13); otherwise false. Characters have a special meaning
in pattern matching notation (“?”, “*”, and “[“) that are quoted in pattern (using
<backslash>, single-quote, or double-quote) shall not have a special meaning,
and shall instead only match themselves.

string = pattern
equivalent to string == pattern.

string != pattern
the logical negation of string == pattern.

string =~ regex
true if string matches the extended regular expression (ERE) regex as defined
in section 9.4; otherwise false. Characters that are quoted in regex (using
<backslash>, single-quote, or double-quote) shall not be treated as an ERE
special character, but shall instead be treated as an ERE ordinary character
and thus only match themselves.

string1 < string2
 true if string1 collates before string2 in the current locale; otherwise, false.

string1 > string2
 true if string1 collates after string2 in the current locale; otherwise, false.

pathname1 -nt pathname2
true if pathname1 resolves to an existing file and pathname2 cannot be resolved,
or if both resolve to an existing file and pathname1 is newer than pathname2
according to their last data modification timestamps; otherwise, false.

pathname1 -ot pathname2
true if pathname2 resolves to an existing file and pathname1 cannot be resolved,
or if both resolve to an existing file and pathname1 is older than pathname2
according to their last data modification timestamps; otherwise, false.

pathname1 -ef pathname2
true if pathname1 and pathname2 resolve to existing directory entries for the
same file; otherwise, false.

-v word
true if word expands to the name of a variable that is set; otherwise, false.

Expressions can be combined as follows, in decreasing order of precedence:
(e)

true if expression e is true, otherwise false. This is used to override other
precedence rules.

! e
true if expression e is false, otherwise false.

e1 && e2
true if both e1 and e2 are true, otherwise false . This is a short-circuit
evaluation; if e1 is false, e2 shall not be evaluated.

e1 || e2
true if either e1 or e2 is true, otherwise false. This is a short-circuit evaluation;
if e1 is true, e2 shall not be evaluated.

Minimum requirements for numeric processing in conditional expressions are defined in section
2.6.4 (“Arithmetic Expansion”).

In the grammar of section 2.10.2, make the following changes:

After line 74771 (2013 edition) add a new grammar rule:

10. [conditional command]

When the TOKEN is exactly a reserved word and the preceding token was neither
DB_UNARY nor DB_BINARY, the token identifier for that reserved word shall result.
When the TOKEN is exactly “-b”, “-c”, “-d”, “-e”, “-f”, “-g”, “-h”, “-L”, “-n”, “-p”, “-r”, “-S”, “-
s”, “-t”, “-u”, “-v”, “-w”, “-x”, or “-z”, and the preceding token was neither DB_UNARY nor
DB_BINARY, the token identifier DB_UNARY shall result. Implementations may
recognize additional DB_UNARY tokens consisting of a <hyphen> and an alphabetic
character from the portable character set, or <hyphen><underscore> and one or more
alphabetic characters from the portable character set. When the TOKEN is exactly “==”,
“=”, “!=”, “=~”, “<”, “>”, “-ef”, “-eq”, “-ne”, “-gt”, “-ge”, “-lt”, “-le”, “-nt”, or “-ot”, and the
preceding token was neither DB_UNARY nor DB_BINARY, the token identifier
DB_BINARY shall result. Implementations may recognize additional DB_BINARY
tokens consisting of one or more punctuation characters from the portable character set
excluding '-' and '-_', or consisting of a <hyphen> and two or more alphabetic characters
from the portable character set, . Otherwise, the token WORD shall be returned.

In line 73515-73516, add ‘[[‘ and ‘]]’ by replacing those lines with:
%token Lbrace Rbrace Bang Ldbracket Rdbracket
/* ’{’ ’}’ ’!’ ’[[’ ’]]’ */

After line 73542, after function_definition, add as a new type of command:
 | double_bracket_expression

Before 73617 (definition of simple_command), add:
double_bracket_expression : Ldbracket inner_db_expression Rdbracket
 | Ldbracket inner_db_expression Rdbracket redirect_list
 ;
inner_db_expression : db_term
 | inner_db_expression OR_IF db_term
 ;
db_term : db_factor
 | db_term AND_IF db_factor
 ;
db_factor : Bang db_factor
 | '(' inner_db_expression ')'
 | DB_UNARY WORD /* Apply rule 10 */
 | WORD DB_BINARY WORD /* Apply rule 10 */
 ;

Replace obsolete rationale

Replace the rationale text for 'test' (line 109222-109225 in posix.1-2008+tc1) discussing why
[[was not added should be removed with the following: “The KornShell-derived conditional
command (double bracket [[..]]) is related, but conditional commands provide additional
functionality and are easier to use correctly.”

Similarly, on lines 109277-109281, after the old text: “Some additional primaries newly invented
or from the KornShell appeared in an early proposal as part of the conditional command ([[]]):
s1 > s2, s1 < s2, str = pattern, str != pattern, f1 −nt f2, f1 −ot f2, and f1 −ef f2.” Change the text
“They were not carried forward into the test utility when the conditional command was removed
from the shell because they have not been included in the test utility built into historical
implementations of the sh utility.” into the following: “They were not carried forward into the test
utility because they have not been included in the test utility built into historical implementations
of the sh utility. To use these capabilities, see the specification for the conditional command.”

Rationale
The text below isn’t a proposed addition to the “rationale” text of the document, this is just
additional rationale for readers of this proposal.

Add “==” to test

This proposed change adds primary "s1 == s2" as a synonym for "s1 = s2".

There are several reasons for adding “==”:
1. Primary “==” is already widely implemented in many implementations and is

used in many shell scripts. This suggests that there is value in standardizing it.
2. Primary “==” is more visually distinct from assignment (“=”). Since “=” is also

used for assignment in shell scripts, using “==” for “is equals” makes the
comparison visually distinctive, making it clearer to readers that “is equals” is
intended.

3. Allowing “==” for “is-equal-to” adds consistency with other programming
languages that use “=” for assignment. Most languages that use “=” for
assignment also use “==” for “is equals” so that these operations are more
visually distinct. These include C, C++, Java, C#, Python, and Perl. It is oddly
inconsistent that test/[do not support “==” as well. Many languages (like Pascal)
that use "=" for comparison use another spelling (like ":=") for assignment, again,
to keep their spellings separate. In some cases these languages can always
disambiguate from context, and even then, they intentionally do not use the

same spelling. It's too late to get rid of "=" for comparison, but it's easy to add
"==" as a synonym, which is what is proposed.

4. This functionality is so widely supported that many script writers assume “==” is
already in the POSIX standard. In some cases adding support for “==” in test/
[will cause previously-non-portable scripts to become portable.

A counter-argument to adding “==” is that it is redundant with “=”. This is true, but there are
many other redundancies in POSIX. In any case, it is a redundancy that is considered valuable
by many; “=” came first, and many implementers have added “==” since.

It could be argued that perhaps “==” should mean “numeric equality” instead of “string equality”.
However, “==” is already widely implemented and universally used to mean string equality. In
contrast, there are no instances where it is implemented or used to mean numeric equality in a
test/[or shell implementation. This universal agreement strongly suggests that string equality is
the right semantic to standardize. In addition, any other semantic would be a silent semantic
change for no good reason.

Obviously, there is no requirement that assignment and is-equal-to be visually distinctive, since
they are disambiguated by being part of test/[or not. A “=” only means “is-equal” inside test/[,
and it only means “assignment” as a shell command in sh. But many shell and test
implementations do support “==”; their many users, and the many other languages which do
this, suggest that this is widely considered to be useful.

This proposal is not a proposal that “everyone just switch to bash”. This is widely-implemented
extension, not one implemented solely by bash, and it is used by those who do not use bash.

The primary “==” is a very widely-implemented synonym for “=” and in all cases it is
implemented as a synonym for “=”. The “==” in test is already implemented in at least the
following implementations:

1. GNU bash: Supports ==.
2. GNU coreutils “test”: Added "==" support on 2011-03-22.
3. ash: Supports ==.
4. pdksh (public domain korn shell): Supports ==, see

http :// web . cs . mun . ca /~ michael / pdksh / pdksh - man . html (Note that some system’s
“ksh” is actually pdksh).

5. mksh (MirBSD(TM) Korn Shell): Supports ==. See
http :// www . mirbsd . org / mksh . htm

6. OpenBSD's /bin/sh: Supports "==" (it's not documented, but it DOES work).
7. FreeBSD-current's /bin/sh and /bin/test have recently added "==". See

http :// svn . freebsd . org / base / head / bin / test / test . c .
8. busybox ash: Supports ==. This is particularly remarkable, since busybox is

designed for relatively small systems and emphasizes small code size. Yet even
busybox implements “==”.

9. AT&T ksh, see below.

http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://svn.freebsd.org/base/head/bin/test/test.c
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://www.mirbsd.org/mksh.htm
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html

A few implementations do not support “==”, but even in those cases it tends to be trivial to add:
1. NetBSD’s sh doesn't support "==", but a patch has been submitted to add it. The

last comment (2011-03-18) on it was positive, but is is not clear what they will do
with it: http :// gnats . netbsd . org / cgi - bin / query - pr - single . pl ? number =44733 .
However, if this is added to POSIX, it is likely to be added to NetBSD sh.

2. The dash shell does not support "==", but doing so is a one-line patch. This
patch is at http :// permalink . gmane . org / gmane . comp . shells . dash /498 and was
submitted on 2011-03-06. The developers seemed to agree that if POSIX added
"==" as a requirement, dash would implement it.

David Korn reported in an email (to austin-group-l at opengroup . org dated November 16, 2011)
that, “test has been a built-in from day 1 of ksh. Moreover, == is supported as a synonym for =”.
AT&T ksh does have “[[“ and inside this it does support “==” as a synonym for “=”; in fact, it
considers “=” obsolete inside “[[“.

Add “-nt” (newer-than) and “-ot” (older-than)
This proposal adds primaries -nt (newer-than) and -ot (older-than) for comparing modification
timestamps as a comparison operator inside [[...]]. Determining if something should be done,
based on whether or not one file is newer than another, is a common operation. Thus, it makes
sense to include the ability to easily compare modification times of filesystem objects. On the
2013-11-29 teleconference it was generally agreed to add these, but only inside [[...]] and not to
test/[as a requirement. Implementations are free to add these as an extension to test/[, but
portable code would use them inside [[...]]. Note that this decision also avoids minor
incompatibilities in semantics for test/[vs. [[…]].

It is possible to get the same effect using the standard mechanisms using awkward expressions
such as ["$(find 'pathname1' -prune -newer 'pathname2')"]. However, this is not at all clear,
and is much more complicated. This extension is widely implemented, and this proposal adds it
the standard.

An older version of this proposal defined the semantic as checking if a file “existed”. However,
Geoff Clare pointed out on November 18, 2011, that ksh and bash (at least) do not distinguish
between non-existence (ENOENT) from the stat() errors EACCES, ENOTDIR, and ELOOP (at
least), and that is probably true for all stat() errors. Thus, the proposal was tweaked to state if
the file “resolves to an existing file” instead of “exists” in the proposed text. Also, the phrase
“modification time” was clarified to “last data modification timestamps”.

One challenge is, what should the semantics be if files do not exist? For purposes of this issue,
we will ignore the distinction between “do not exist” and “have a stat error” (as that is a separate
issue). Possibilities for the standard are:

http://opengroup.org/
http://opengroup.org/
http://opengroup.org/
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://permalink.gmane.org/gmane.comp.shells.dash/498
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733
http://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=44733

1. Both files must exist for a “true” result. This is the semantic of “dash” and some
other implementations in test/[, though note that dash does not implement [[..]].
This can be expressed as:

a. pathname1 −nt pathname2:True if pathname1 and pathname2
exist and pathname1 is newer than pathname2 according to their
modification times; otherwise false.

b. pathname1 −ot pathname2: True if pathname1 and pathname2
exist and pathname1 is older than pathname2 according to their
modification times; otherwise false.

2. A nonexistent file is considered older than a file that does exist. This is the
semantic of bash and current pdksh. Note that pdksh version 5.2.14 switched to
this semantic in 1999, suggesting that there was value to this particular semantic.
It’s also the semantic of the original KornShell (though the KornShell book
incorrectly says otherwise; see below). This semantic can be expressed as:

a. pathname1 -nt pathname2: True if pathname1 exists and
pathname2 does not, or if both exist and pathname1 is newer than
pathname2 according to their modification times; otherwise, false.
(Note that if pathname1 does not exist, the result is false.)

b. pathname1 -ot pathname2: True if pathname2 exists and
pathname1 does not, or if both exist and pathname1 is older than
pathname2 according to their modification times; otherwise, false.
(Note that if pathname2 does not exist, the result is false.)

3. Allow either semantic. An example would be:
a. pathname1 −nt pathname2:True if both pathname1 and

pathname2 exist and pathname1 is newer than pathname2
according to their modification times. False if pathname1 does not
exist. Otherwise, it is unspecified if it returns true or false.

b. pathname1 −ot pathname2: True if both pathname1 and
pathname2 exist and pathname1 is older than pathname2
according to their modification times. False if pathname2 does not
exist. Otherwise, it is unspecified if it returns true or false.

An argument for option 1 is that its description is slightly simpler. But it is not much simpler.

The proposal here recommends option 2, namely, that nonexistent files be considered older, for
the following reasons:

1. This makes it simple to express the case where a file “overrides” an older file, as
a file that exists is considered newer than a file that does not exist.

2. Tighter semantics are in general desirable, where practical.
3. Since pdksh intentionally switched to this semantic, this suggests that this is a

more useful semantic.

An argument for option 3 is that no one has to change their implementation to match, if it were
also required for test/[. If option 2 is not accepted, option 3 would be a reasonable alternative,

especially since there would always be the option to tighten up the semantics in some future
version of POSIX if necessary.

David Korn reported in an email (to austin-group-l at opengroup . org dated November 16, 2011)
some useful history on -nt and -ot. In this email, he stated that the behavior “of -nt and -ot when
file1 and file2 did not exist was not well documented the KornShell book upon which the
standard is based. It was documented incorrectly in the New KornShell book published in 1995
[as]:
[[file1 -nt file2]] is true if file1 is newer than file2 or file2 does not exits.
[[file1 -ot file2]] is true if file1 is older than file2 or file2 does not exits.
The [[file1 -ot file2]] should be true if file1 doesn't exist, not file2.
Thus if [[file1 nt -file2]] is true, then [[file1 -ot -file2]] must
be false even if file1 file2 do not exist. If both do not exist,
then they must both be false.” Thus, KornShell implemented the semantics as proposed (option
2), even though the KornShell book incorrectly says otherwise.

Add “-ef”
In many cases it is useful to know if two different filenames refer to the same file. For example,
http :// gcc . gnu . org / bugzilla / show _ bug . cgi ? id =30838 reports on a shell script “gen-classlist.sh”
with the following line, so that certain actions will only occur if two different directory names refer
to different directories:

if test ! "${top_builddir}" -ef "@top_srcdir@"; then

On the 2013-11-29 teleconference it was generally agreed to add this, but only inside [[...]] and
not to test/[as a requirement.

This text is worded as “refer to the same file” instead of simply “are hard linked,” as this is what
extant implementations actually do. In particular, if files symbolically link to the same eventual
file, comparing them with “-ef” should produce “true”. Austin group defect report 375, reply 670,
reports that:

touch a; ln -s a b; test a -ef b
sets $? to 0 on at least bash and GNU coreutils test (at least).

This primary is currently implemented in at least bash, busybox sh, and GNU coreutils test.

Add “[[”
The test/[operator can sometimes be difficult to use correctly. Word splitting and pathname
expansion can require many quote characters to do simple comparisons. Longer expressions
(involving “-a” or “-o”) can be misinterpreted, especially if an expansion produces a value that
looks like a primary (e.g., “-z”). The common extension comparisons “<” and “>” must to be

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30838
http://opengroup.org/
http://opengroup.org/
http://opengroup.org/

quoted if they are used at all, and implementations differ on how locale affects these
comparisons inside test/[. If a variable expands to a comparison operator, it can be
misinterpreted in certain cases.

Perhaps most concerningly, it is overly difficult to compare strings with text patterns using test/[.
Developers sometimes use “case” to compare variables with a globbing pattern, because test
does not include a mechanism for doing so. And “case” only supports the simple globbing
scheme, not the far more capable regular expression pattern-matching mechanism.

Adding “[[“ adds a way to perform tests that are less error-prone, as well as adding various
useful capabilities such as pattern-matching (both globbing and regular expressions) and lexical
comparison. What’s more, these are already in use.

An older version of this proposal added “[[“ as a grouping command, but it is not really a
grouping command. Instead, it is a way to compute expressions, and thus it doesn't really fit
with the way the standard uses the term “grouping command” (the specification says they
"provide control flow for commands"). It is not a simple command either, because preceding it
with assignments or redirections causes it not to be recognised. For example, in ksh:
$ foo=bar [[x == x]]
-ksh: [[: not found [No such file or directory]
$ > /tmp/foo [[x == x]]
-ksh: [[: not found [No such file or directory]

The text is worded to make it clear that in [[...]], if a word evaluates to a conditional operator
(such as “-z”) it will not be considered an operator. This is different from test/[, which is an
advantage of [[...]]. For example:
$ [$(printf '%s\n' -z) ""]; echo $?
0
$ [[$(printf '%s\n' -z) ""]]; echo $?
-ksh: syntax error: `' unexpected

The grammar given above stops at the point where “test” is no longer defined in a grammar.

The effects of quoting and expansion on operators that take patterns is not well documented in
ksh’s man page nor in bash’s info page. This is not as simple as just saying that quoting
characters within the pattern preserves their literal value, because backslash is still special
within "..." but not '...'. The effects of quoting also apply to special characters resulting from
expansions. For example:
 pattern='*'
 [[string == $pattern]] # matches
 [[string == "$pattern"]] # does not match because the * is literal
This is also true for regular expression matching using “=~” using both ksh and bash:
 pattern=".*"
 [[stuff =~ .*]] && echo true # prints true

 [[stuff =~ $pattern]] && echo true # prints true
 [[stuff =~ ".*"]] && echo true # Does NOT print true
 [[stuff =~ "$pattern"]] && echo true # Does NOT print true
 [[stuff =~ '.*']] && echo true # Does NOT print true

The proposed semantics are based on the “[[“ implementations of bash (see
http :// www . gnu . org / s / bash / manual / html _ node / Conditional - Constructs . html # Conditional -
Constructs), pdksh (see http :// web . cs . mun . ca /~ michael / pdksh / pdksh - man . html) , and AT&T
ksh93 (http :// www 2. research . att . com / sw / download / man / man 1/ ksh . html).

The proposal given here includes “! expression”. However, it does not require support for the
one-parameter “string” or “! string” as a valid expression. Many implementations interpret a
“string” all by itself as true if non-null, and false if an empty string. These were not included on
the theory that there are alternative ways of expressing this that are much clearer:
-n string
-z string
string == ""
string != ""
If the standards body prefers, one-parameter “string” and “! string” could be easily added to the
proposal. The text has been worded so that single parameter “string” and “! string” are valid
nonstandard extensions.

Add “-v”
This proposal includes “-v”. This is in many implementations of [[…]] but by no means all.

The "-v" option is in ksh93:

http://www2.research.att.com/sw/download/man/man1/ksh.html [^]

The "-v" option is also in the latest version of bash:

https://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-
Expressions.html#Bash-Conditional-Expressions [^]

Note that this a recent addition; bash version 4.0.23(1) does NOT have it.

The MirBSD ksh does NOT have "-v". However, there's no conflicting interpretation of "-v", so it
could be added without trouble:

https://www.mirbsd.org/htman/i386/man1/mksh.htm [^]

http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://web.cs.mun.ca/~michael/pdksh/pdksh-man.html)
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs
http://www.gnu.org/s/bash/manual/html_node/Conditional-Constructs.html#Conditional-Constructs

Wheeler tried out the ksh93 version, and there is NO limitation on word; "-v VAR" checks for
literal VAR, while "-v $VAR" as expected retrieves the content of VAR, allowing indirect
checking if a given value exists.

Alternative proposals

Adding “<” and “>” to test
Early versions of this proposal also proposed adding this to test/[:.
In the text of test, circa page 3224, add the following primary definitions:

● s1 < s2 True if the string s1 is lexicographically less than s2; otherwise, false.
● s1 > s2 True if the string s1 is lexicographically greater than s2; otherwise, false.

However, comment #670 by eblake on 2011-02-07 (see http://austingroupbugs.net/view.php?
id=375 comment #670) made some good points about the problems with these primaries. He
noted that < and > inside test/[must be quoted. Also, existing implementations often fail to
implement locale-specific collation with these primaries. Thus, as recommended by eblake, an
effort has been made to standardize [[, where < and > do not have to be quoted, and where
collation is always done according to locale; “<” and “>” are then proposed as part of added to
[[...]]. Thus, the “<” and “>” functionality are provided in this proposal, but only inside [[..]].

Appendix A: Interpretation of -nt and -ot

Unfortunately, there are differences in how -nt and -ot are implemented in different shells in test/
[. This appendix shows the differences in detail. At this point this information is historical, since
-nt and -ot are only being proposed inside [[…]], where there are no known differences.
However, this information is retained here in case it’s useful later.

http :// austingroupbugs . net / view . php ? id =375 bugnote 975 includes a report from gber on 2011-
09-25 stating: “It should be noted that there are widespread implementations of test -nt/-ot with
different and incompatible semantics in FreeBSD/NetBSD/OpenBSD and dash. These test
implementations all trace their roots to the test builtin of pdksh before version 5.2.14, the
difference to the behavior described above is that test will return failure in case the second file
does not exist. The test implementations with this behavior have been used by NetBSD since
1994 and by FreeBSD since 1999 and it seems to have been used by dash since the first Linux
port of ash in 1993.”

http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375
http://austingroupbugs.net/view.php?id=375

In particular, pdksh trunk changed its semantics in 1999 with this changelog entry from
http :// web . cs . mun . ca /~ michael / pdksh / ChangeLog :
Wed Jun 30 17:42:54 NDT 1999 Michael Rendell (michael@lyman.cs.mun.ca)

* c_test.c(test_eval): changed -nt/-ot tests so they succeed
 if pathname2 (pathname2) `does not exist' (ie, the stat fails).
 (based on fix from Dave Hillman).

To determine various systems’ behavior, the following script was run in a directory with files “n”
(newer) and “o” (older), and no such files named 1 or 2:
result() {
 if ["$?" = 0] ; then

echo "t"
 else

echo "f"
 fi
}

files 1 and 2 don't exit. File "o" is older than file "n" (newer):
ITEMS="1 o n"

echo "Smoke test: Produce false and true:"
false ; result
true ; result

echo "test -nt, for files $ITEMS:"
for left in $ITEMS ; do
 for right in $ITEMS 2 ; do

if ! ["$right" = "2"] || ["$left" = "1"] ; then
 printf "%s -nt %s: " "$left" "$right"
 test $left -nt $right ; result

fi
 done
done

echo "test -ot, for files $ITEMS:"
for left in $ITEMS ; do
 for right in $ITEMS 2 ; do

if ! ["$right" = "2"] || ["$left" = "1"] ; then
 printf "%s -ot %s: " "$left" "$right"
 test $left -ot $right ; result

fi
 done
done

http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog
http://web.cs.mun.ca/~michael/pdksh/ChangeLog

The following are produced by GNU bash 4.1.10(4), GNU coreutils test, and pdksh version
5.2.14:
Smoke test: Produce false and true:
f
t
test -nt, for files 1 o n:
1 -nt 1: f
1 -nt o: f
1 -nt n: f
1 -nt 2: f
o -nt 1: t
o -nt o: f
o -nt n: f
n -nt 1: t
n -nt o: t
n -nt n: f
test -ot, for files 1 o n:
1 -ot 1: f
1 -ot o: t
1 -ot n: t
1 -ot 2: f
o -ot 1: f
o -ot o: f
o -ot n: t
n -ot 1: f
n -ot o: f
n -ot n: f

The following is produced by dash version 0.5.6.1:
Smoke test: Produce false and true:
f
t
test -nt, for files 1 o n:
1 -nt 1: f
1 -nt o: f
1 -nt n: f
1 -nt 2: f
o -nt 1: f
o -nt o: f
o -nt n: f
n -nt 1: f

n -nt o: t
n -nt n: f
test -ot, for files 1 o n:
1 -ot 1: f
1 -ot o: f
1 -ot n: f
1 -ot 2: f
o -ot 1: f
o -ot o: f
o -ot n: t
n -ot 1: f
n -ot o: f
n -ot n: f

The output of “diff -u ,bash ,dash” is, briefly (the results of “bash” are shown with “-” while the
results of dash are shown with “+”):
 1 -nt o: f
 1 -nt n: f
 1 -nt 2: f
-o -nt 1: t
+o -nt 1: f
 o -nt o: f
 o -nt n: f
-n -nt 1: t
+n -nt 1: f
 n -nt o: t
 n -nt n: f
 test -ot, for files 1 o n:
 1 -ot 1: f
-1 -ot o: t
-1 -ot n: t
+1 -ot o: f
+1 -ot n: f
 1 -ot 2: f
 o -ot 1: f
 o -ot o: f

Appendix B: Experiments with [[..]]
David A. Wheeler created a program to experiment with [[…]]. That program is available as
http://www.dwheeler.com/misc/doubletest. Here are the results of that program as of the time of
this writing (where ASSIGNMENT: … shows variable assignments, and the rest show results of
[[…]]).

http://www.dwheeler.com/misc/doubletest

ASSIGNMENT: gpat='a*b'
ASSIGNMENT: epat='a.*b'
ASSIGNMENT: a2e='abcde'
ASSIGNMENT: endc='^ab*c$'
[[y = "y"]] : true
[[y != "y"]] : false
[[aXXXb = a*b]] : true
[[aXXXb = $gpat]] : true
[[aXXXb == $gpat]] : true
[[aXXXb =~ $epat]] : true
[[acXde = a*e]] : true
[[acXde = c*d]] : false
[[acXde =~ a.*e]] : true
[[acXde =~ c.*d]] : true
[[acXde =~ ^c.*d]] : false
[[acXde =~ c.*d$]] : false
[[acXde = "a*e"]] : false
[[acXde =~ "a.*e"]] : false
[[$a2e =~ a.*e]] : true
[[$a2e =~ "a.*e"]] : false
[["$a2e" =~ a.*e]] : true
[[aabbcc =~ a.*c]] : true
[[aabbcc =~ 'a.*c']] : false
[[aabbcc =~ 'a'.*'c']] : true
[['aqc' = a*c]] : true
[['aqc' = a*c]] : false
[['a*c' = a*c]] : false
[['a*c' = 'a*c']] : true
[['abbc' =~ ^ab*c$]] : true
[[abbc =~ $endc]] : true
[[! abbc =~ $endc]] : false

	Overview
	Issue
	Background
	Requirements
	Importance
	Proposed changes to the POSIX specification
	Note that page and line numbers are for the 2008 edition unless otherwise stated.
	Add “==” to test/[
	Add “[[”
	Rationale
	Add “==” to test
	Add “-nt” (newer-than) and “-ot” (older-than)
	Add “-ef”
	Add “[[”
	Add “-v”
	This proposal includes “-v”. This is in many implementations of [[…]] but by no means all.
	The "-v" option is in ksh93:
	http://www2.research.att.com/sw/download/man/man1/ksh.html [^]
	The "-v" option is also in the latest version of bash:
	https://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-Expressions.html#Bash-Conditional-Expressions [^]
	Note that this a recent addition; bash version 4.0.23(1) does NOT have it.
	The MirBSD ksh does NOT have "-v". However, there's no conflicting interpretation of "-v", so it could be added without trouble:
	https://www.mirbsd.org/htman/i386/man1/mksh.htm [^]
	Wheeler tried out the ksh93 version, and there is NO limitation on word; "-v VAR" checks for literal VAR, while "-v $VAR" as expected retrieves the content of VAR, allowing indirect checking if a given value exists.
	Alternative proposals
	Adding “<” and “>” to test
	Appendix A: Interpretation of -nt and -ot
	Appendix B: Experiments with [[..]]

